深度神经网络模型训练时GPU显存不足怎么办?

前言

最近跑的模型都比较大,尤其是Bert, 这真的是难为我 1080ti 了, 在Bert的Example中,官方提供了一些 Trick 来帮助我们加速训练,很良心, 但感觉还不够,于是花费一些时间整理出一个 Trick 集合,来帮助我们在显存不足的时候来嘿嘿嘿。

本文分为两大部分,第一部分引入一个主题:如何估计模型所需显存, 第二个主题:GPU显存不足时的各种 Trick 。

监控 GPU

监控GPU最常用的当然是 nvidia-smi ,但有一个工具能够更好的展示信息:gpustat 。

nvidia-smi
watch --color -n1 gpustat -cpu   # 动态事实监控GPU

推荐在配置文件中配置别名,反正我每次 gpu 一下,信息就全出来了,很方便。

下面有同学推荐nvtop, 我简单试了试,的确挺好的,展现出现的信息很丰富 , 推荐试一试。

如何估计模型显存 [1]
首先,思考一个问题: 模型中的哪些东西占据了我的显存,咋就动不动就 out of memory?

其实一个模型所占用的显存主要包含两部分: 模型自身的参数, 优化器参数, 模型每层的输入输出。

模型自身参数

模型自身的参数指的就是各个网络层的 Weight 和Bias,这部分显存在模型加载完成之后就会被占用, 注意到的是,有些层是有参数的,如CNN, RNN; 而有些层是无参数的, 如激活层, 池化层等。

从Pytorch 的角度来说,当你执行 model.to(device) 是, 你的模型就加载完毕,此时你的模型就已经加载完成了。

对于Pytorch来说,模型参数存储在 model.parameters() 中,因此,我们不需要自己计算,完全可以通过Pytorh来直接打印:

print('Model {} : params: {:4f}M'.format(model._get_name(), para * type_size / 1000 / 1000))

优化器参数

优化器参数指的是模型在优化过程即反向传播中所产生的参数, 这部分参数主要指的就是 dw, 即梯度,在SGD中, 其大小与参数一样, 因此在优化期间, 模型的参数所占用的显存会翻倍。

值得注意的是,不同的优化器其所需保存的优化参数不同, 对于 Adam, 由于其还需要保存其余参数, 模型的参数量会在优化区间翻 4 倍。

模型每层的输入输出

首先,第一点是输入数据所占用的显存, 这部分所占用的显存其实并不大,这是因为我们往往采用迭代器的方式读取数据,这意味着我们其实并不是一次性的将所有数据读入显存,而这保证每次输入所占用的显存与整个网络参数来比是微不足道的。

然后,在模型进行前向传播与反向传播时, 一个很重要的事情就是计算并保存每一层的输出以及其对应的梯度, 这意味着,这也占据了很大一部分显存。

最后, 模型输出的显存占用可以总结为:

  • 每一层的输出(多维数组), 其对应的梯度, 值得注意的是,模型输出不需要存储相应的动量信息(即此处如果使用Adam, 模型输出的参数量依旧是2倍而不是4倍, 我也不知道为啥??求大佬指教)
  • 输出的显存占用与 batch size 成正比

那么有没有办法通过Pytorch来计算这部分参数量呢? 答案是有的,我们可以假设一个batch的样本,然后通过 model.modules() 来对每一层进行遍历,获得每一层的输出shape, 然后就能够获得一个batch的数据的输出参数量。[2]

所有的显存占用计算

显存占用 = 模型自身参数 × n + batch size × 输出参数量 × 2 + 一个batch的输入数据(往往忽略)

其中,n是根据优化算法来定的,如果选用SGD, 则 n = 2, 如果选择Adam, 则 n = 4.

一个很棒的实现如下, 我懒得再重新写了,你可以根据这个改一改,问题不大。

# 模型显存占用监测函数
# model:输入的模型
# input:实际中需要输入的Tensor变量
# type_size 默认为 4 默认类型为 float32 
 
def modelsize(model, input, type_size=4):
    para = sum([np.prod(list(p.size())) for p in model.parameters()])
    print('Model {} : params: {:4f}M'.format(model._get_name(), para * type_size / 1000 / 1000))
 
    input_ = input.clone()
    input_.requires_grad_(requires_grad=False)
 
    mods = list(model.modules())
    out_sizes = []
 
    for i in range(1, len(mods)):
        m = mods[i]
        if isinstance(m, nn.ReLU):
            if m.inplace:
                continue
        out = m(input_)
        out_sizes.append(np.array(out.size()))
        input_ = out
 
    total_nums = 0
    for i in range(len(out_sizes)):
        s = out_sizes[i]
        nums = np.prod(np.array(s))
        total_nums += nums
 
 
    print('Model {} : intermedite variables: {:3f} M (without backward)'
          .format(model._get_name(), total_nums * type_size / 1000 / 1000))
    print('Model {} : intermedite variables: {:3f} M (with backward)'
          .format(model._get_name(), total_nums * type_size*2 / 1000 / 1000))

GPU 显存不足时的Trick [2]

此处不讨论多GPU, 分布式计算等情况,只讨论一些常规的 Trick, 会不定时进行更新。

降低batch size

这应该很好理解,适当降低batch size, 则模型每层的输入输出就会成线性减少, 效果相当明显。这里需要注意的一点是, dev batch size 的调整也有助于降低显存, 同时,不要将 dev 或 test 的batch size 设置为样本集长度, 我最近就干了这个傻事,害的我调试了一天才调出来是这个问题。

选择更小的数据类型

一般默认情况下, 整个网络中采用的是32位的浮点数,如果切换到 16位的浮点数,其显存占用量将接近呈倍数递减。

精简模型

在设计模型时,适当的精简模型,如原来两层的LSTM转为一层; 原来使用LSTM, 现在使用GRU; 减少卷积核数量; 尽量少的使用 Linear 等。

数据角度

对于文本数据来说,长序列所带来的参数量是呈线性增加的, 适当的缩小序列长度可以极大的降低参数量。

total_loss

考虑到 loss 本身是一个包含梯度信息的 tensor, 因此,正确的求损失和的方式为:

total_loss += loss.item()

释放不需要的张量和变量

采用del释放你不再需要的张量和变量,这也要求我们在写模型的时候注意变量的使用,不要随心所欲,漫天飞舞。

Relu 的 inplace 参数

激活函数 Relu() 有一个默认参数 inplace ,默认为Flase, 当设置为True的时候,我们在通过relu() 计算得到的新值不会占用新的空间而是直接覆盖原来的值,这表示设为True, 可以节省一部分显存。

梯度累积

首先, 要了解一些Pytorch的基本知识:

  • 在Pytorch 中,当我们执行 loss.backward() 时, 会为每个参数计算梯度,并将其存储在 paramter.grad 中, 注意到, paramter.grad 是一个张量, 其会累加每次计算得到的梯度。
  • 在 Pytorch 中, 只有调用 optimizer.step()时才会进行梯度下降更新网络参数。

我们知道, batch size 与占用显存息息相关,但有时候我们的batch size 又不能设置的太小,这咋办呢? 答案就是梯度累加

我们先来看看传统训练:

for i,(feature,target) in enumerate(train_loader):
    outputs = model(feature)  # 前向传播
    loss = criterion(outputs,target)  # 计算损失
 
    optimizer.zero_grad()   # 清空梯度
    loss.backward()  # 计算梯度
    optimizer.step()  # 反向传播, 更新网络参数

而加入梯度累加之后,代码是这样的:

for i,(features,target) in enumerate(train_loader):
    outputs = model(images)  # 前向传播
    loss = criterion(outputs,target)  # 计算损失
    loss = loss/accumulation_steps   # 可选,如果损失要在训练样本上取平均
 
    loss.backward()  # 计算梯度
    if((i+1)%accumulation_steps)==0:
        optimizer.step()        # 反向传播,更新网络参数
        optimizer.zero_grad()   # 清空梯度

比较来看, 我们发现,梯度累加本质上就是累加 accumulation_steps 个batch 的梯度, 再根据累加的梯度来更新网络参数,以达到类似batch_size 为 accumulation_steps * batch_size 的效果。在使用时,需要注意适当的扩大学习率。

更详细来说, 我们假设 batch size = 32, accumulation steps = 8 , 梯度积累首先在前向传播的时候讲 batch 分为 accumulation steps 份, 然后得到 size=4 的小份batch , 每次就以小 batch 来计算梯度,但是不更新参数,将梯度积累下来,直到我们计算了 accumulation steps 个小 batch, 我们再更新参数。

梯度积累能很大程度上缓解GPU显存不足的问题,推荐使用。

在Bert的仓库中,就使用了这个Trick,十分实用,简直是我们这种乞丐实验室的良心Trick。

梯度检查点

这个Trick我没用过,毕竟模型还没有那么那么大。

等我用过再更新吧,先把坑挖下。

最后

哎, 如果你看完了这篇文章,就说明了一件事情: **小伙子,你卡也不够啊。**哎, 乞丐实验室不配深度学习,哭了。

Reference

[1]科普帖:深度学习中GPU和显存分析

[2]如何在Pytorch中精细化利用显存

[3]GPU捉襟见肘还想训练大批量模型?谁说不可以

[4]PyTorch中在反向传播前为什么要手动将梯度清零?

[5]From zero to research — An introduction to Meta-learning

[6]Training Neural Nets on Larger Batches: Practical Tips for 1-GPU, Multi-GPU & Distributed setups

发布了7 篇原创文章 · 获赞 4 · 访问量 210

猜你喜欢

转载自blog.csdn.net/Zserendipity/article/details/105301983