Spark算子--RDD的基本转换


多个RDD合并

RDD的合并,按RDD内数据结构的是否相同分为两类。

1、合并的多个RDD结构相同

涉及的Spark函数有union、intersection、subtract

1.1 union

def union(other: RDD[T]): RDD[T]

该函数比较简单,就是将两个RDD进行合并,不去重

1.2  intersection

def intersection(other: RDD[T]): RDD[T]

def intersection(other: RDD[T], numPartitions: Int): RDD[T]

def intersection(other: RDD[T], partitioner: Partitioner)(implicit ord: Ordering[T] = null): RDD[T]

该函数返回两个RDD的交集,并且去重

参数numPartitions指定返回的RDD的分区数。

参数partitioner用于指定分区函数。


1.3 subtract

def subtract(other: RDD[T]): RDD[T]

def subtract(other: RDD[T], numPartitions: Int): RDD[T]

def subtract(other: RDD[T], partitioner: Partitioner)(implicit ord: Ordering[T] = null): RDD[T]

该函数类似于intersection,但返回在RDD中出现,并且不在otherRDD中出现的元素,不去重

参数含义同intersection

scala> var rdd1 = sc.makeRDD(Seq(1,2,2,3))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[66] at makeRDD at :21
 
scala> rdd1.collect
res48: Array[Int] = Array(1, 2, 2, 3)
 
scala> var rdd2 = sc.makeRDD(3 to 4)
rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[67] at makeRDD at :21
 
scala> rdd2.collect
res49: Array[Int] = Array(3, 4)
 
scala> rdd1.subtract(rdd2).collect
res50: Array[Int] = Array(1, 2, 2)

RDD之间的join

cogroup

cogroup相当于SQL中的全外关联full outer join,返回左右RDD中的记录,关联不上的为空。

参数numPartitions用于指定结果的分区数。

参数partitioner用于指定分区函数。

##参数为1个RDD的例子 

var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
 
scala> var rdd3 = rdd1.cogroup(rdd2)
rdd3: org.apache.spark.rdd.RDD[(String, (Iterable[String], Iterable[String]))] = MapPartitionsRDD[12] at cogroup at :25
 
scala> rdd3.partitions.size
res3: Int = 2
 
scala> rdd3.collect
res1: Array[(String, (Iterable[String], Iterable[String]))] = Array(
(B,(CompactBuffer(2),CompactBuffer())), 
(D,(CompactBuffer(),CompactBuffer(d))), 
(A,(CompactBuffer(1),CompactBuffer(a))), 
(C,(CompactBuffer(3),CompactBuffer(c)))
)
 
scala> var rdd4 = rdd1.cogroup(rdd2,3)
rdd4: org.apache.spark.rdd.RDD[(String, (Iterable[String], Iterable[String]))] = MapPartitionsRDD[14] at cogroup at :25
 
scala> rdd4.partitions.size
res5: Int = 3
 
scala> rdd4.collect
res6: Array[(String, (Iterable[String], Iterable[String]))] = Array(
(B,(CompactBuffer(2),CompactBuffer())), 
(C,(CompactBuffer(3),CompactBuffer(c))), 
(A,(CompactBuffer(1),CompactBuffer(a))), 
(D,(CompactBuffer(),CompactBuffer(d))))

##参数为2个RDD的例子

var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
var rdd3 = sc.makeRDD(Array(("A","A"),("E","E")),2)
 
scala> var rdd4 = rdd1.cogroup(rdd2,rdd3)
rdd4: org.apache.spark.rdd.RDD[(String, (Iterable[String], Iterable[String], Iterable[String]))] = 
MapPartitionsRDD[17] at cogroup at :27
 
scala> rdd4.partitions.size
res7: Int = 2
 
scala> rdd4.collect
res9: Array[(String, (Iterable[String], Iterable[String], Iterable[String]))] = Array(
(B,(CompactBuffer(2),CompactBuffer(),CompactBuffer())), 
(D,(CompactBuffer(),CompactBuffer(d),CompactBuffer())), 
(A,(CompactBuffer(1),CompactBuffer(a),CompactBuffer(A))), 
(C,(CompactBuffer(3),CompactBuffer(c),CompactBuffer())), 
(E,(CompactBuffer(),CompactBuffer(),CompactBuffer(E))))

join

def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]

def join[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, W))]

def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))]

join相当于SQL中的内关联join,只返回两个RDD根据K可以关联上的结果,join只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。

参数numPartitions用于指定结果的分区数

参数partitioner用于指定分区函数

var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
 
scala> rdd1.join(rdd2).collect
res10: Array[(String, (String, String))] = Array((A,(1,a)), (C,(3,c)))

leftOuterJoin

def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]

def leftOuterJoin[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, Option[W]))]

def leftOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, Option[W]))]

leftOuterJoin类似于SQL中的左外关联left outer join,返回结果以前面的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。

参数numPartitions用于指定结果的分区数

参数partitioner用于指定分区函数

var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
 
scala> rdd1.leftOuterJoin(rdd2).collect
res11: Array[(String, (String, Option[String]))] = Array((B,(2,None)), (A,(1,Some(a))), (C,(3,Some(c))))

rightOuterJoin

def rightOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (Option[V], W))]

def rightOuterJoin[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Option[V], W))]

def rightOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (Option[V], W))] 

rightOuterJoin类似于SQL中的有外关联right outer join,返回结果以参数中的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。

参数numPartitions用于指定结果的分区数

参数partitioner用于指定分区函数

var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
scala> rdd1.rightOuterJoin(rdd2).collect
res12: Array[(String, (Option[String], String))] = Array((D,(None,d)), (A,(Some(1),a)), (C,(Some(3),c)))

subtractByKey

def subtractByKey[W](other: RDD[(K, W)])(implicit arg0: ClassTag[W]): RDD[(K, V)]

def subtractByKey[W](other: RDD[(K, W)], numPartitions: Int)(implicit arg0: ClassTag[W]): RDD[(K, V)]

def subtractByKey[W](other: RDD[(K, W)], p: Partitioner)(implicit arg0: ClassTag[W]): RDD[(K, V)]

subtractByKey和基本转换操作中的subtract类似,只不过这里是针对K的,返回在主RDD中出现,并且不在otherRDD中出现的元素。

参数numPartitions用于指定结果的分区数

参数partitioner用于指定分区函数

var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
scala> rdd1.subtractByKey(rdd2).collect
res13: Array[(String, String)] = Array((B,2))

Action操作

聚合

aggregate

def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U

aggregate用户聚合RDD中的元素,先使用seqOp将RDD中每个分区中的T类型元素聚合成U类型,再使用combOp将之前每个分区聚合后的U类型聚合成U类型,特别注意seqOp和combOp都会使用zeroValue的值,zeroValue的类型为U。  

var rdd1 = sc.makeRDD(1 to 10,2)
rdd1.mapPartitionsWithIndex{
        (partIdx,iter) => {
          var part_map = scala.collection.mutable.Map[String,List[Int]]()
            while(iter.hasNext){
              var part_name = "part_" + partIdx;
              var elem = iter.next()
              if(part_map.contains(part_name)) {
                var elems = part_map(part_name)
                elems ::= elem
                part_map(part_name) = elems
              } else {
                part_map(part_name) = List[Int]{elem}
              }
            }
            part_map.iterator
           
        }
      }.collect
res16: Array[(String, List[Int])] = Array((part_0,List(5, 4, 3, 2, 1)), (part_1,List(10, 9, 8, 7, 6)))

##第一个分区中包含5,4,3,2,1

##第二个分区中包含10,9,8,7,6

scala> rdd1.aggregate(1)(
     |           {(x : Int,y : Int) => x + y}, 
     |           {(a : Int,b : Int) => a + b}
     |     )
res17: Int = 58

结果为什么是58,看下面的计算过程:

##先在每个分区中迭代执行 (x : Int,y : Int) => x + y 并且使用zeroValue的值1

##即:part_0中 zeroValue+5+4+3+2+1 = 1+5+4+3+2+1 = 16

## part_1中 zeroValue+10+9+8+7+6 = 1+10+9+8+7+6 = 41

##再将两个分区的结果合并(a : Int,b : Int) => a + b ,并且使用zeroValue的值1

##即:zeroValue+part_0+part_1 = 1 + 16 + 41 = 58

再比如:

scala> rdd1.aggregate(2)(
     |           {(x : Int,y : Int) => x + y}, 
     |           {(a : Int,b : Int) => a * b}
     |     )
res18: Int = 1428
 

##这次zeroValue=2

##part_0中 zeroValue+5+4+3+2+1 = 2+5+4+3+2+1 = 17

##part_1中 zeroValue+10+9+8+7+6 = 2+10+9+8+7+6 = 42

##最后:zeroValue*part_0*part_1 = 2 * 17 * 42 = 1428

因此,zeroValue即确定了U的类型,也会对结果产生至关重要的影响,使用时候要特别注意。

fold

def fold(zeroValue: T)(op: (T, T) ⇒ T): T

fold是aggregate的简化,将aggregate中的seqOp和combOp使用同一个函数op。

scala> rdd1.fold(1)(
     |       (x,y) => x + y    
     |     )
res19: Int = 58
 
##结果同上面使用aggregate的第一个例子一样,即:
scala> rdd1.aggregate(1)(
     |           {(x,y) => x + y}, 
     |           {(a,b) => a + b}
     |     )
res20: Int = 58

拿元素

lookup

def lookup(key: K): Seq[V]

lookup用于(K,V)类型的RDD,指定K值,返回RDD中该K对应的所有V值。

scala> var rdd1 = sc.makeRDD(Array(("A",0),("A",2),("B",1),("B",2),("C",1)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[0] at makeRDD at :21
 
scala> rdd1.lookup("A")
res0: Seq[Int] = WrappedArray(0, 2)
 
scala> rdd1.lookup("B")
res1: Seq[Int] = WrappedArray(1, 2)

take

def take(num: Int): Array[T]

take用于获取RDD中从0到num-1下标的元素,不排序。

scala> var rdd1 = sc.makeRDD(Seq(10, 4, 2, 12, 3))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[40] at makeRDD at :21
 
scala> rdd1.take(1)
res0: Array[Int] = Array(10)                                                    
 
scala> rdd1.take(2)
res1: Array[Int] = Array(10, 4)

top

def top(num: Int)(implicit ord: Ordering[T]): Array[T]

top函数用于从RDD中,按照默认(降序)或者指定的排序规则,返回前num个元素。

scala> var rdd1 = sc.makeRDD(Seq(10, 4, 2, 12, 3))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[40] at makeRDD at :21
 
scala> rdd1.top(1)
res2: Array[Int] = Array(12)
 
scala> rdd1.top(2)
res3: Array[Int] = Array(12, 10)
 
//指定排序规则
scala> implicit val myOrd = implicitly[Ordering[Int]].reverse
myOrd: scala.math.Ordering[Int] = scala.math.Ordering$$anon$4@767499ef
 
scala> rdd1.top(1)
res4: Array[Int] = Array(2)
 
scala> rdd1.top(2)
res5: Array[Int] = Array(2, 3)

takeOrdered

def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
takeOrdered和top类似,只不过以和top相反的顺序返回元素。

scala> var rdd1 = sc.makeRDD(Seq(10, 4, 2, 12, 3))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[40] at makeRDD at :21
 
scala> rdd1.top(1)
res4: Array[Int] = Array(2)
 
scala> rdd1.top(2)
res5: Array[Int] = Array(2, 3)
 
scala> rdd1.takeOrdered(1)
res6: Array[Int] = Array(12)
 
scala> rdd1.takeOrdered(2)
res7: Array[Int] = Array(12, 10)

save

saveAsTextFile、saveAsSequenceFile、saveAsObjectFile、saveAsHadoopFile、saveAsHadoopDataset、saveAsNewAPIHadoopFile、saveAsNewAPIHadoopDataset


参考http://lxw1234.com/archives/category/spark


猜你喜欢

转载自blog.csdn.net/oitebody/article/details/79554186