《玩转数据结构 从入门到进阶》平衡二叉树AVL

本文来源于liuyubobobo的“玩转数据结构 从入门到进阶”视频教程

平衡二叉树的定义:对于任意一个节点,左子树和右子树的高度差不能超过1。

使用代码实现AVL需要用到我之前的一篇 《玩转数据结构 从入门到进阶》二分搜索树 Binary Search Tree 中的代码,建议先看这篇文章。

先在二分搜索树的代码上加上计算平衡因子的代码

package com.datastructure;

import java.util.ArrayList;

// 在二分搜索树的基础上实现平衡二叉树
public class AVLTree<K extends Comparable<K>, V> {

    private class Node{
        public K key;
        public V value;
        public Node left, right;
        // 使用height表示节点的高度
        public int height;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
            height = 1;
        }
    }

    private Node root;
    private int size;

    public AVLTree(){
        root = null;
        size = 0;
    }

    public int getSize(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    private int getHeight(Node node){
        if(node == null)
            return 0;
        return node.height;
    }

    public void add(K key, V value){
        root = add(root, key, value);
    }

    private Node add(Node node, K key, V value){
        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else
            node.value = value;

        // 节点的高度是左右子树最大高度加1
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        // 计算平衡因子,稍后奉上保持树平衡的代码
        int balanceFactor = getBalanceFactor(node);
        if(Math.abs(balanceFactor) > 1)
            System.out.println("未平衡,节点高度差 : " + balanceFactor);

        return node;
    }

    private Node getNode(Node node, K key){
        if(node == null)
            return null;
        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else
            return getNode(node.right, key);
    }

    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    public V get(K key){
        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + "节点不存在");
        node.value = newValue;
    }

    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    private Node removeMin(Node node){
        if(node.left == null){
            Node rightNode = node.right;
            node.right = null;
            size --;
            return rightNode;
        }
        node.left = removeMin(node.left);
        return node;
    }

    public V remove(K key){
        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){
        if( node == null )
            return null;
        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            return node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            return node;
        }
        else{
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                return rightNode;
            }
            if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                return leftNode;
            }
            Node successor = minimum(node.right);
            successor.right = removeMin(node.right);
            successor.left = node.left;
            node.left = node.right = null;
            return successor;
        }
    }


    // 获取节点node的平衡因子
    private int getBalanceFactor(Node node){
        if(node == null)
            return 0;
        // 左子树高度减去右子树高度
        return getHeight(node.left) - getHeight(node.right);
    }

    public static void main(String[] args){
        /**
         * 读取傲慢与偏见这本书,通过 “单词”:“单词在书中出现的次数” 这种key-value的形式把书中的单词-词频加到AVLTree中
         * FileUtil、傲慢与偏见.txt 可以到我的github下载
         * https://github.com/CodingSoldier/java-learn/tree/master/note/src/main/java/com/datastructure
         */
        ArrayList<String> words = new ArrayList<>();
        if(FileUtil.readFile("./note/src/main/java/com/datastructure/傲慢与偏见.txt", words)) {
            System.out.println("总单词数: " + words.size());
            AVLTree<String, Integer> map = new AVLTree<>();
            for (String word : words) {
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }
            System.out.println("单词去重后的总数: " + map.getSize());
        }
    }
}

与二分搜索树的不同主要在于

1、Node节点添加了一个  public int height;  属性,用于计算左右子树的高度差。

2、添加了一个计算平衡因子的方法

    // 获取节点node的平衡因子
    private int getBalanceFactor(Node node){
        if(node == null)
            return 0;
        // 左子树高度减去右子树高度
        return getHeight(node.left) - getHeight(node.right);
    }

3、添加节点时,部分节点的高度会发生改变

// 节点的高度是左右子树最大高度加1
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

// 计算平衡因子,稍后奉上保持树平衡的代码
int balanceFactor = getBalanceFactor(node);
if(Math.abs(balanceFactor) > 1)
    System.out.println("未平衡,节点高度差 : " + balanceFactor);

上面已经写好了获取节点平衡因子的代码,我们再增加判断树是否为平衡二叉树的方法

    // 判断二叉树是否是一颗平衡二叉树
    public boolean isBalanced(){
        return isBalanced(root);
    }

    // 递归比遍历以node为根节点的二叉树是否是平衡二叉树
    private boolean isBalanced(Node node){
        if (node == null)
            return true;
        // 获取平衡因子
        int balanceFactor = getBalanceFactor(node);
        // 只要有一个节点的平衡因子绝对值大于1,就不是平衡二叉树
        if (Math.abs(balanceFactor) > 1)
            return false;
        return isBalanced(node.left) && isBalanced(node.right);
    }

当向树插入元素时,会出现树的平衡性被破坏的情况,即getBalanceFactor(node)的绝对值有可能大于1。这时候就应该对树进行调整,保证getBalanceFactor(node)的绝对值小于等于1。

1、首先考虑往树的左侧最深节点的左侧插入数据,导致树不平等的情况。

右旋转方法

    // 对节点y进行向右旋转操作,返回旋转后新的根节点x
    //        y                              x
    //       / \                           /   \
    //      x   T4     向右旋转 (y)        z     y
    //     / \       - - - - - - - ->    / \   / \
    //    z   T3                       T1  T2 T3 T4
    //   / \
    // T1   T2
    private Node rightRotate(Node y) {
        Node x = y.left;
        Node T3 = x.right;

        // 向右旋转过程
        x.right = y;
        y.left = T3;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

在add(Node node, K key, V value)方法中加入触发右旋转的代码

// LL,右旋转
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
    return rightRotate(node);

2、往树的右侧最深节点的右侧插入数据导致树不平衡

    // 对节点y进行向左旋转操作,返回旋转后新的根节点x
    //    y                             x
    //  /  \                          /   \
    // T4   x      向左旋转 (y)       y     z
    //     / \   - - - - - - - ->   / \   / \
    //   T3  z                     T4 T3 T1 T2
    //      / \
    //     T1 T2
    private Node leftRotate(Node y) {
        Node x = y.right;
        Node T3 = x.left;
        // 向左旋转过程
        x.left = y;
        y.right = T3;
        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
        return x;
    }

在add(Node node, K key, V value)方法中加入触发左旋转的代码

// RR,右旋转旋转
if (balanceFactor > 1 && getBalanceFactor(node.right) >= 0)
    return leftRotate(node);

3、往树的左侧最深节点的右侧插入数据,导致树不平等的情况。

在add(Node node, K key, V value)方法中加入以下的代码

// LR
if (balanceFactor > 1 && getBalanceFactor(node.left) < 0){
    node.left = leftRotate(node.left);
    return rightRotate(node);
}

4、往树的右侧最深节点的左侧插入数据,导致树不平等的情况。

在add(Node node, K key, V value)方法中加入以下的代码

// RL
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
    node.right = rightRotate(node.right);
    return leftRotate(node);
}

至此,新增节点时维持树平衡的情况就考虑完了,下面给出add(Node node, K key, V value)的完整代码

    private Node add(Node node, K key, V value){
        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else
            node.value = value;

        // 节点的高度是左右子树最大高度加1
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(node);

        // LL,右旋转
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
            return rightRotate(node);

        // RR,左旋转
        if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
            return leftRotate(node);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(node.left) < 0){
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

        return node;
    }

修改下main方法,测试给树添加元素后,树是否保持为平衡二叉树

    public static void main(String[] args){
        /**
         * 读取傲慢与偏见这本书,通过 “单词”:“单词在书中出现的次数” 这种key-value的形式把书中的单词-词频加到AVLTree中
         * FileUtil、傲慢与偏见.txt 可以到我的github下载
         * https://github.com/CodingSoldier/java-learn/tree/master/note/src/main/java/com/datastructure
         */
        ArrayList<String> words = new ArrayList<>();
        if(FileUtil.readFile("./note/src/main/java/com/datastructure/傲慢与偏见.txt", words)) {
            System.out.println("总单词数: " + words.size());
            AVLTree<String, Integer> map = new AVLTree<>();
            for (String word : words) {
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }
            System.out.println("单词去重后的总数: " + map.getSize());
            System.out.println("是否平衡: " + map.isBalanced());
        }
    }

删除节点

平衡二叉树删除节点的代码也可以复用二分搜索树删除节点的代码,但删除节点后,要维护树的平衡性。

    public V remove(K key){
        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){
        if( node == null )
            return null;

        Node retNode;
        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            // 不能直接返回node,因为后面还要修改node的高度值
            retNode = node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            retNode = node;
        } else{   // key.compareTo(node.key) == 0

            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                retNode = rightNode;
            } else if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                retNode = leftNode;
            } else{
                // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
                // 用这个节点顶替待删除节点的位置
                Node successor = minimum(node.right);
                // 不使用removeMin,不然需要在removeMin中维护树的平衡性
                successor.right = remove(node.right, successor.key);
                successor.left = node.left;
                node.left = node.right = null;
                retNode = successor;
            }
        }

        if(retNode == null)
            return null;

        // 更新height
        retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(retNode);

        // 维护树的平衡性
        // LL
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
            return rightRotate(retNode);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
            return leftRotate(retNode);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
            retNode.left = leftRotate(retNode.left);
            return rightRotate(retNode);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
            retNode.right = rightRotate(retNode.right);
            return leftRotate(retNode);
        }

        return retNode;
    }

完整代码

// 在二分搜索树的基础上实现平衡二叉树
public class AVLTree<K extends Comparable<K>, V> {

    private class Node{
        public K key;
        public V value;
        public Node left, right;
        // 使用height表示节点的高度
        public int height;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
            height = 1;
        }
    }

    private Node root;
    private int size;

    public AVLTree(){
        root = null;
        size = 0;
    }

    public int getSize(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    private Node getNode(Node node, K key){
        if(node == null)
            return null;
        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else
            return getNode(node.right, key);
    }

    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    public V get(K key){
        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + "节点不存在");
        node.value = newValue;
    }

    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    private Node removeMin(Node node){
        if(node.left == null){
            Node rightNode = node.right;
            node.right = null;
            size --;
            return rightNode;
        }
        node.left = removeMin(node.left);
        return node;
    }

    public V remove(K key){
        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){
        if( node == null )
            return null;

        Node retNode;
        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            // 不能直接返回node,因为后面还要修改node的高度值
            retNode = node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            retNode = node;
        } else{   // key.compareTo(node.key) == 0

            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                retNode = rightNode;
            } else if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                retNode = leftNode;
            } else{
                // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
                // 用这个节点顶替待删除节点的位置
                Node successor = minimum(node.right);
                // 不使用removeMin,不然需要在removeMin中维护树的平衡性
                successor.right = remove(node.right, successor.key);
                successor.left = node.left;
                node.left = node.right = null;
                retNode = successor;
            }
        }

        if(retNode == null)
            return null;

        // 更新height
        retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(retNode);

        // 维护树的平衡性
        // LL
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
            return rightRotate(retNode);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
            return leftRotate(retNode);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
            retNode.left = leftRotate(retNode.left);
            return rightRotate(retNode);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
            retNode.right = rightRotate(retNode.right);
            return leftRotate(retNode);
        }

        return retNode;
    }

    private Node rightRotate(Node y){
        Node x = y.left;
        Node T3 = x.right;

        x.right = y;
        y.left = T3;

        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    private Node leftRotate(Node y){
        Node x = y.right;
        Node T2 = x.left;

        x.left = y;
        y.right = T2;

        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    public void add(K key, V value){
        root = add(root, key, value);
    }

    private Node add(Node node, K key, V value){
        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else
            node.value = value;

        // 节点的高度是左右子树最大高度加1
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(node);

        // LL,右旋转
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
            return rightRotate(node);

        // RR,左旋转
        if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
            return leftRotate(node);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(node.left) < 0){
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

        return node;
    }

    // 获取节点高度
    private int getHeight(Node node){
        if(node == null)
            return 0;
        return node.height;
    }

    // 获取节点node的平衡因子
    private int getBalanceFactor(Node node){
        if(node == null)
            return 0;
        // 左子树高度减去右子树高度
        return getHeight(node.left) - getHeight(node.right);
    }

    // 判断二叉树是否是一颗平衡二叉树
    public boolean isBalanced(){
        return isBalanced(root);
    }

    // 递归比遍历以node为根节点的二叉树是否是平衡二叉树
    private boolean isBalanced(Node node){
        if (node == null)
            return true;
        // 获取平衡因子
        int balanceFactor = getBalanceFactor(node);
        // 只要有一个节点的平衡因子绝对值大于1,就不是平衡二叉树
        if (Math.abs(balanceFactor) > 1)
            return false;
        return isBalanced(node.left) && isBalanced(node.right);
    }

    public static void main(String[] args){
        /**
         * 读取傲慢与偏见这本书,通过 “单词”:“单词在书中出现的次数” 这种key-value的形式把书中的单词-词频加到AVLTree中
         * FileUtil、傲慢与偏见.txt 可以到我的github下载
         * https://github.com/CodingSoldier/java-learn/tree/master/note/src/main/java/com/datastructure
         */
        ArrayList<String> words = new ArrayList<>();
        if(FileUtil.readFile("./note/src/main/java/com/datastructure/傲慢与偏见.txt", words)) {
            System.out.println("总单词数: " + words.size());
            AVLTree<String, Integer> map = new AVLTree<>();
            for (String word : words) {
                if (map.contains(word))
                    map.set(word, map.get(word) + 1);
                else
                    map.add(word, 1);
            }
            System.out.println("单词去重后的总数: " + map.getSize());
            System.out.println("是否平衡: " + map.isBalanced());

            for (String word:words){
                map.remove(word);
                if (!map.isBalanced())
                    throw new RuntimeException("这句话打印出来,就不平衡了");
            }
        }
    }
}
发布了51 篇原创文章 · 获赞 14 · 访问量 4万+

猜你喜欢

转载自blog.csdn.net/u010606397/article/details/99689570