小困惑

冒泡排序

冒泡排序是排序算法的一种,思路清晰,代码简洁,常被用在大学生计算机课程中。

“冒泡”这个名字的由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

这里以从小到大排序为例进行讲解。

基本思想及举例说明

冒泡排序的基本思想就是不断比较相邻的两个数,让较大的元素不断地往后移。经过一轮比较,就选出最大的数;经过第2轮比较,就选出次大的数,以此类推。

下面以对 3 2 4 1 进行冒泡排序说明。

第一轮 排序过程

3 2 4 1 (最初)

2 3 4 2 (比较3和2,交换)

2 3 4 1 (比较3和4,不交换)

2 3 1 4 (比较4和1,交换)

第一轮结束,最大的数4已经在最后面,因此第二轮排序只需要对前面三个数进行再比较。

第二轮 排序过程

2 3 1 4 (第一轮排序结果)

2 3 1 4 (比较2和3,不交换)

2 1 3 4 (比较3和1,交换

第二轮结束,第二大的数已经排在倒数第二个位置,所以第三轮只需要比较前两个元素。

第三轮 排序过程

2 1 3 4 (第二轮排序结果)

1 2 3 4 (比较2和1,交换)

至此,排序结束。

算法总结及实现

对于具有N个元素的数组R[n],进行最多N-1轮比较;

第一轮,逐个比较(R[1], R[2]), (R[2], R[3]), (R[3], R[4]), ……. (R[N-1], R[N]) ; 最大的元素会被移动到R[N]上。

第二轮,逐个比较(R[1], R[2]), (R[2], R[3]), (R[3], R[4]), ……. (R[N-2], R[N-1]);第二大元素会被移动到R[N-1]上。

。。。。

以此类推,直到整个数组从小到大排序。

下面给出了冒泡排序的一般实现和优化实现。一般实现是教科书里常见的实现方法,无论数组是否排序好了,都会进行N-1轮比较; 而优化实现,在数组已经排序好的情况下,会提前退出比较,减小了算法的时间复杂度。

#include<stdio.h>
#include<stdlib.h>
#define N 8
void bubble_sort(int a[],int n);
//一般实现
void bubble_sort(int a[],int n)//n为数组a的元素个数
{
//一定进行N-1轮比较
for(int i=0; i<n-1; i++)
{
//每一轮比较前n-1-i个,即已排序好的最后i个不用比较
for(int j=0; j<n-1-i; j++)
{
if(a[j] > a[j+1])
{
int temp = a[j];
a[j] = a[j+1];
a[j+1]=temp;
}
}
}
}


//优化实现
void bubble_sort_better(int a[],int n)//n为数组a的元素个数
{
//最多进行N-1轮比较
for(int i=0; i<n-1; i++)
{
bool isSorted = true;
//每一轮比较前n-1-i个,即已排序好的最后i个不用比较
for(int j=0; j<n-1-i; j++)
{
if(a[j] > a[j+1])
{
isSorted = false;
int temp = a[j];
a[j] = a[j+1];
a[j+1]=temp;
}
}
if(isSorted) break; //如果没有发生交换,说明数组已经排序好了
}
}
int main()
{
int num[N] = {89, 38, 11, 78, 96, 44, 19, 25};
bubble_sort(num, N); //或者使用bubble_sort_better(num, N);
for(int i=0; i<N; i++)
printf("%d “, num[i]);
printf(”\n");
system(“pause”);
return 0;
}

一个int 型整数存储的最小数字为什么是-2147483648

这是由二进制补码的性质决定的。一个二进制符号数的补码,所能存储的数的范围是有负号的一半,无负号的一半,由于0占了一位,所以正数比负数少一个。
k位的二进制整数可以表示的状态共2k种,所以,负数有2(k-1)个。int型占4个字节,有32位,所以负数有231个,最小的负数就是-231=-2147483648了。

一. 机器数和真值

在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.

1、机器数

一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。

那么,这里的 00000011 和 10000011 就是机器数。

2、真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

二. 原码, 反码, 补码的基础概念和计算方法.

在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式.

1. 原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1]原 = 0000 0001

[-1]原 = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111]

[-127 , 127]

原码是人脑最容易理解和计算的表示方式.

2. 反码

反码的表示方法是:

正数的反码是其本身

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001]原 = [00000001]反

[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

3. 补码

补码的表示方法是:

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补

[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

三. 为何要使用原码, 反码和补码

在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法.

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]补

所以不需要过多解释. 但是对于负数:

[-1] = [10000001]原 = [11111110]反 = [11111111]补

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.

注意-2147483648:

64位系统中,int的最小值为-2147483648 = -2^31,其补码为1000…0000。计算时采用补码。

那对-2147483648取负值时,按理论应该是2147483648,但超过int能表达的最大正值,相当于2147283647+1=0111…1111+0000…0001=1000…0000=-2147483648(按补码理解)。也就是说对-2147483648取负仍然是-2147483648。

对-2147483648-1时,相当于1000…0000+1111…1111(-1的补码)=0111…1111(溢出后)=2147483647(int的最大正值)

四 原码, 反码, 补码 再深入

计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?

将钟表想象成是一个1位的12进制数. 如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?我们可以:

\1. 往回拨2个小时: 6 - 2 = 4

\2. 往前拨10个小时: (6 + 10) mod 12 = 4

\3. 往前拨10+12=22个小时: (6+22) mod 12 =4

2,3方法中的mod是指取模操作, 16 mod 12 =4 即用16除以12后的余数是4.

所以钟表往回拨(减法)的结果可以用往前拨(加法)替代!

现在的焦点就落在了如何用一个正数, 来替代一个负数. 上面的例子我们能感觉出来一些端倪, 发现一些规律. 但是数学是严谨的. 不能靠感觉.

首先介绍一个数学中相关的概念: 同余

同余的概念

两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余

记作 a ≡ b (mod m)

读作 a 与 b 关于模 m 同余。

举例说明:

4 mod 12 = 4

16 mod 12 = 4

28 mod 12 = 4

所以4, 16, 28关于模 12 同余.

负数取模

正数进行mod运算是很简单的. 但是负数呢?

下面是关于mod运算的数学定义:

clip_image001

上面是截图, "取下界"符号找不到如何输入(word中粘贴过来后乱码). 下面是使用"L"和"J"替换上图的"取下界"符号:

x mod y = x - y L x / y J

上面公式的意思是:

x mod y等于 x 减去 y 乘上 x与y的商的下界.

以 -3 mod 2 举例:

-3 mod 2

= -3 - 2xL -3/2 J

= -3 - 2xL-1.5J

= -3 - 2x(-2)

= -3 + 4 = 1

所以:

(-2) mod 12 = 12-2=10

(-4) mod 12 = 12-4 = 8

(-5) mod 12 = 12 - 5 = 7

开始证明

再回到时钟的问题上:

回拨2小时 = 前拨10小时

回拨4小时 = 前拨8小时

回拨5小时= 前拨7小时

注意, 这里发现的规律!

结合上面学到的同余的概念.实际上:

(-2) mod 12 = 10

10 mod 12 = 10

-2与10是同余的.

(-4) mod 12 = 8

8 mod 12 = 8

-4与8是同余的.

距离成功越来越近了. 要实现用正数替代负数, 只需要运用同余数的两个定理:

反身性:

a ≡ a (mod m)

这个定理是很显而易见的.

线性运算定理:

如果a ≡ b (mod m),c ≡ d (mod m) 那么:

(1)a ± c ≡ b ± d (mod m)

(2)a * c ≡ b * d (mod m)

如果想看这个定理的证明, 请看:http://baike.baidu.com/view/79282.htm

所以:

7 ≡ 7 (mod 12)

(-2) ≡ 10 (mod 12)

7 -2 ≡ 7 + 10 (mod 12)

现在我们为一个负数, 找到了它的正数同余数. 但是并不是7-2 = 7+10, 而是 7 -2 ≡ 7 + 10 (mod 12) , 即计算结果的余数相等.

接下来回到二进制的问题上, 看一下: 2-1=1的问题.

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原= [0000 0010]反 + [1111 1110]反

先到这一步, -1的反码表示是1111 1110. 如果这里将[1111 1110]认为是原码, 则[1111 1110]原 = -126, 这里将符号位除去, 即认为是126.

发现有如下规律:

(-1) mod 127 = 126

126 mod 127 = 126

即:

(-1) ≡ 126 (mod 127)

2-1 ≡ 2+126 (mod 127)

2-1 与 2+126的余数结果是相同的! 而这个余数, 正式我们的期望的计算结果: 2-1=1

所以说一个数的反码, 实际上是这个数对于一个膜的同余数. 而这个膜并不是我们的二进制, 而是所能表示的最大值! 这就和钟表一样, 转了一圈后总能找到在可表示范围内的一个正确的数值!

而2+126很显然相当于钟表转过了一轮, 而因为符号位是参与计算的, 正好和溢出的最高位形成正确的运算结果.

既然反码可以将减法变成加法, 那么现在计算机使用的补码呢? 为什么在反码的基础上加1, 还能得到正确的结果?

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原 = [0000 0010]补 + [1111 1111]补

如果把[1111 1111]当成原码, 去除符号位, 则:

[0111 1111]原 = 127

其实, 在反码的基础上+1, 只是相当于增加了膜的值:

(-1) mod 128 = 127

127 mod 128 = 127

2-1 ≡ 2+127 (mod 128)

此时, 表盘相当于每128个刻度转一轮. 所以用补码表示的运算结果最小值和最大值应该是[-128, 128].

但是由于0的特殊情况, 没有办法表示128, 所以补码的取值范围是[-128, 127]

本人一直不善于数学, 所以如果文中有不对的地方请大家多多包含, 多多指点!

作者:张子秋
出处:http://www.cnblogs.com/zhangziqiu/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

移位规则:

(1)对无符号数3来说:

x<<1往左移一位,最左边的位移掉了,最右边的移进来的位补零。变成00000110,所以结果是6;[12^2 + 12^1 + 0*2^0 = 6]

x>>1往右边移一位,由于是无符号数,所以逻辑右移,最右边一位移掉,最左边移进来的位补零,变成00000001,所以结果是1。[1*2^0 = 1]

(2)对于有符号数3来说:

x<<1往左移一位,最左边的位移掉了,最右边的移进来的位补零。变成00000110,所以结果是6;

x>>1往右边移一位,由于是有符号数,可能发生逻辑右移,也可能发生算术右移,这一点,C标准并没有明确地指定是使用逻辑右移还是算术右移。但大多数的机器都使用算术右移,变成00000001,所以结果还是1。

但是请注意,这只是说大多数的机器是这样的,你敢保证自己不会碰到特殊情况吗?

(3)对于有符号数-3来说:

x<<1往左移一位,最左边的位移掉了,最右边的移进来的位补零。变成11111010,结果是-6;[-(12^2 + 02^1 + 1*2^0 +1) = -6]

x>>1往右移一位,由于是有符号数,可能发生逻辑右移,也可能发生算术右移。大多数机器使用算术右移,变成11111110,结果是-2。[-(1*2^0 +1) = -2]

总结:

左移时总是移位和补零;

右移时无符号数是移位和补零,此时称为逻辑右移;

而有符号数大多数情况下是移位和补最左边的位(也就是补最高有效位),移几位就补几位,此时称为算术右移。

关于为什么负数的补码为符号位不变各位取反加1

数在计算机中是以二进制形式表示的。
数分为有符号数和无符号数。
原码、反码、补码都是有符号定点数的表示方法。
一个有符号定点数的最高位为符号位,0是正,1是副。

以下都以8位整数为例,

原码就是这个数本身的二进制形式。
例如
0000001 就是+1
1000001 就是-1

正数的反码和补码都是和原码相同。

负数的反码是将其原码除符号位之外的各位求反
[-3]反=[10000011]反=11111100
负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。
[-3]补=[10000011]补=11111101
一个数和它的补码是可逆的。

为什么要设立补码呢?

第一是为了能让计算机执行减法:
[a-b]补=a补+(-b)补

第二个原因是为了统一正0和负0
正零:00000000
负零:10000000
这两个数其实都是0,但他们的原码却有不同的表示。
但是他们的补码是一样的,都是00000000
特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)
[10000000]补
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢出了,符号位变成了0)

有人会问
10000000这个补码表示的哪个数的补码呢?
其实这是一个规定,这个数表示的是-128
所以n位补码能表示的范围是
-2(n-1)到2(n-1)-1
比n位原码能表示的数多一个

又例:
1011
原码:01011
反码:01011 //正数时,反码=原码
补码:01011 //正数时,补码=原码

-1011
原码:11011
反码:10100 //负数时,反码为原码取反
补码:10101 //负数时,补码为原码取反+1

0.1101
原码:0.1101
反码:0.1101 //正数时,反码=原码
补码:0.1101 //正数时,补码=原码

-0.1101
原码:1.1101
反码:1.0010 //负数时,反码为原码取反
补码:1.0011 //负数时,补码为原码取反+1

总结:
在计算机内,定点数有3种表示法:原码、反码和补码

所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。

反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。

1、原码、反码和补码的表示方法

(1) 原码:在数值前直接加一符号位的表示法。

例如: 符号位 数值位

[+7]原= 0 0000111 B

[-7]原= 1 0000111 B

注意:a. 数0的原码有两种形式:

[+0]原=00000000B [-0]原=10000000B

b. 8位二进制原码的表示范围:-127~+127

2)反码:

正数:正数的反码与原码相同。

负数:负数的反码,符号位为“1”,数值部分按位取反。

例如: 符号位 数值位

[+7]反= 0 0000111 B

[-7]反= 1 1111000 B

注意:a. 数0的反码也有两种形式,即

[+0]反=00000000B

[- 0]反=11111111B

b. 8位二进制反码的表示范围:-127~+127

3)补码的表示方法

1)模的概念:把一个计量单位称之为模或模数。例如,时钟是以12进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的;因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为补数。

2)补码的表示: 正数:正数的补码和原码相同。

负数:负数的补码则是符号位为“1”,数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。

例如: 符号位 数值位

[+7]补= 0 0000111 B

[-7]补= 1 1111001 B

补码在微型机中是一种重要的编码形式,请注意:

a.采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。采用补码进行运算,所得结果仍为补码。

b.与原码、反码不同,数值0的补码只有一个,即 [0]补=00000000B。

c.若字长为8位,则补码所表示的范围为-128~+127;进行补码运算时,应注意所得结果不应超过补码所能表示数的范围。

// -64 1100 0000 取反 1011 1111补码1100 0000

1100 0000+1100 0000=1000 0000=-0(高位舍弃)

-64的绝对值,即为0100 0000

绝对值和补码相加

题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为补数。

2)补码的表示: 正数:正数的补码和原码相同。

负数:负数的补码则是符号位为“1”,数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。

例如: 符号位 数值位

[+7]补= 0 0000111 B

[-7]补= 1 1111001 B

补码在微型机中是一种重要的编码形式,请注意:

a.采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。采用补码进行运算,所得结果仍为补码。

b.与原码、反码不同,数值0的补码只有一个,即 [0]补=00000000B。

c.若字长为8位,则补码所表示的范围为-128~+127;进行补码运算时,应注意所得结果不应超过补码所能表示数的范围。

// -64 1100 0000 取反 1011 1111补码1100 0000

1100 0000+1100 0000=1000 0000=-0(高位舍弃)

-64的绝对值,即为0100 0000

绝对值和补码相加

0100 0000+1100 0000=0000 0000=+0

发布了14 篇原创文章 · 获赞 1 · 访问量 409

猜你喜欢

转载自blog.csdn.net/weixin_45719149/article/details/102841722