转载《JVM原理最全、清晰、通俗讲解,五天40小时吐血整理》(一)

原文链接https://blog.csdn.net/csdnliuxin123524/article/details/81303711

1.java自动管理堆(heap)和(栈),程序员不能直接设置堆和栈。

2.操作系统的堆和栈:

堆(操作系统):一般由程序员分配释放,若程序员不释放,可能会导致内存泄漏。

栈(操作系统):由操作系统自动分配释放,存放函数的参数值,局部变量值等。操作方式与数据结构中的栈相类似。

3.为什么jvm的内存是分布在操作系统的堆中呢??因为操作系统的栈是操作系统管理的,它随时会被回收,所以如果jvm放在栈中,那java的一个null对象就很难确定会被谁回收了,那gc的存在就一点意义都莫有了,而要对栈做到自动释放也是jvm需要考虑的,所以放在堆中就最合适不过了

 

上图表明:jvm虚拟机位于操作系统的堆中,并且,程序员写好的类加载到虚拟机执行的过程是:当一个classLoder启动的时候,classLoader的生存地点在jvm中的堆,然后它会去主机硬盘上将A.class装载到jvm的方法区,方法区中的这个字节文件会被虚拟机拿来new A字节码(),然后在堆内存生成了一个A字节码的对象,然后A字节码这个内存文件有两个引用一个指向A的class对象,一个指向加载自己的classLoader,

5,java虚拟机的生命周期:生命周期的起点是当一个java应用main函数启动时虚拟机也同时被启动,而只有当在虚拟机实例中的所有非守护进程都结束时,java虚拟机实例才结束生命。

6,java虚拟机与main方法的关系:main函数就是一个java应用的入口,main函数被执行时,java虚拟机就启动了。启动了几个main函数就启动了几个java应用,同时也启动了几个java的虚拟机。

7,java的虚拟机种有两种线程,一种叫叫守护线程,一种叫非守护线程(也叫普通线程),main函数就是个非守护线程,虚拟机的gc就是一个守护线程。java的虚拟机中,只要有任何非守护线程还没有结束,java虚拟机的实例都不会退出,所以即使main函数这个非守护线程退出,但是由于在main函数中启动的匿名线程也是非守护线程,它还没有结束,所以jvm没办法退出

8,虚拟机的gc(垃圾回收机制)就是一个典型的守护线程。

10,GC垃圾回收机制不是创建的变量为空是就被立刻回收,而是超出变量的作用域后就被自动回收。(这是否不太准确??)
11,程序在jvm执行的流程:
首先,当一个程序启动之前,它的class会被类装载器装入方法区(不好听,其实这个区我喜欢叫做Permanent区),执行引擎读取方法区的字节码自适应解析,边解析就边运行(其中一种方式),然后pc寄存器指向了main函数所在位置,虚拟机开始为main函数在java栈中预留一个栈帧(每个方法都对应一个栈帧),然后开始跑main函数,main函数里的代码被执行引擎映射成本地操作系统里相应的实现,然后调用本地方法接口,本地方法运行的时候,操纵系统会为本地方法分配本地方法栈,用来储存一些临时变量,然后运行本地方法,调用操作系统API等等。
12,根据Java虚拟机规范的规定,如果方法区的内存空间不能满足内存分配需要时,将抛出OutOfMemoryError异常。
13,jvm的结构图:
 
 
方便理解可把上图分为“功能区”和"数据区”(好好理解功能和数据的含义(一动一静)):参考下面13.1,功能区:垃圾回收系统、类加载器、执行引擎;数据区:也就是整个运行时数据区;
13.1 jvm内部执行运行流程图:
 
 
 

 

14,jvm结构图各模块的生命周期总结:
对13中的结构图,做一下统计,启动一个jvm虚拟机程序就是启动了一个进程。启动的同时就在操作系统的堆内存中开辟一块jvm内存区,对于13图中各个小模块的声明周期:
虚拟机栈、本地方法栈、程序计数器这三个模块是线程私有的,有多少线程就有多少个这三个模块,声明周期跟所属线程的声明周期一致。以程序计数器为例,因为多线程是通过线程轮流切换和分配执行时间来实现,所以当线程切回到正确执行位置,每个线程都有独立的程序技术器,各个线程之间的计数器互不影响,独立存储。
其余是跟JVM虚拟机的生命周期一致。
15,13图中,程序计数器模块是JVM内存区域唯一不会报outofMemoryError情况的区域。
16,结合13图,我们总结出JVM内存包含两个子系统和两个组件,两个子系统是:Classloader子系统和Executionengine(执行引擎)子系统;两个组件分别是:Runtimedataarea(运行时数据区域)组件和Nativeinterface(本地库接口)组件。
从图中可以看出运行时数据区域包含5部分:方法区,堆,虚拟机栈,本地方法栈,程序计数器
17,什么是本地库接口和本地方法库:
(1)本地方法库接口:即操作系统所使用的编程语言的方法集,是归属于操作系统的。
(2)本地方法库保存在动态链接库中,即.dll(windows系统)文件中,格式是各个平台专有的。
(3)个人感觉上图的本地库接口有点多余,以下面代码为例:
 
class Calc

{
        static{
                System.loadLibrary("Calc");
        }

        public static native int add(int a, int b);

        public static void main(String[] args)
        {
                System.out.println(add(11,23));

        }
}

对应的C代码:

#include <stdio.h>

#include "Calc.h"

 

/* jint 对应着java 的int类型  */

JNIEXPORT jint JNICALL Java_Calc_add(JNIEnv *env, jclass jc, jint a, jint b)

{

        jint ret = a + b;

        return ret;

}
在java代码中会通过System.loadLibrary("")加载c语言库(本地方法库)直接与操作系统平台交互。
18,双亲委派机制:JVM在加载类时默认采用的是双亲委派机制。通俗的讲,就是某个特定的类加载器在接到加载类的请求时,首先将加载任务委托给父类加载器,依次递归,如果父类加载器可以完成类加载任务,就成功返回;只有父类加载器无法完成此加载任务时,才自己去加载。
 
例如:当jvm要加载Test.class的时候,
  (1)首先会到自定义加载器中查找(其实是看运行时数据区的方法区有没有加载),看是否已经加载过,如果已经加载过,则返回字节码。
  (2)如果自定义加载器没有加载过,则询问上一层加载器(即AppClassLoader)是否已经加载过Test.class。
  (3)如果没有加载过,则询问上一层加载器(ExtClassLoader)是否已经加载过。
  (4)如果没有加载过,则继续询问上一层加载(BoopStrap ClassLoader)是否已经加载过。
  (5)如果BoopStrap ClassLoader依然没有加载过,则到自己指定类加载路径下("sun.boot.class.path")查看是否有Test.class字节码,有则返回,没有通 知下一层加载器ExtClassLoader到自己指定的类加载路径下(java.ext.dirs)查看。
  (6)依次类推,最后到自定义类加载器指定的路径还没有找到Test.class字节码,则抛出异常ClassNotFoundException
protected Class<?> loadClass(String name, boolean resolve)
        throws ClassNotFoundException
    {
        synchronized (getClassLoadingLock(name)) {
            // 首先,检查是否已经加载过

            Class<?> c = findLoadedClass(name);

            if (c == null) {

                long t0 = System.nanoTime();

                try {

                    if (parent != null) {

                        //父加载器不为空,调用父加载器的loadClass

                        c = parent.loadClass(name, false);

                    } else {

                        //父加载器为空则,调用Bootstrap Classloader

                        c = findBootstrapClassOrNull(name);

                    }

                } catch (ClassNotFoundException e) {

                    // ClassNotFoundException thrown if class not found

                    // from the non-null parent class loader

                }

 

                if (c == null) {

                    // If still not found, then invoke findClass in order

                    // to find the class.

                    long t1 = System.nanoTime();

                    //父加载器没有找到,则调用findclass

                    c = findClass(name);

 

                    // this is the defining class loader; record the stats

                    sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);

                    sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);

                    sun.misc.PerfCounter.getFindClasses().increment();

                }

            }

            if (resolve) {

                //调用resolveClass()

                resolveClass(c);

            }

            return c;

        }

    }
    }
为什么要使用这种加载方式呢?这里要注意几点:
1,类加载器代码本身也是java类,因此类加载器本身也是要被加载的,因此显然必须有第一个类加载器不是Java类,这就是bootStrap,是使用c++写的其他这是java了。
2,虽说bootStrap、extclassLoader、appclassloader三个是父子类加载器关系,但是并没有使用继承,而是使用了组合关系。
3,优点,具备了一种带优先级的层次关系,越是基础的类,越是被上层的类加载器进行加载,可以比较笼统的说像jdk自带的几个jar包肯定是位于最顶级的,再就是我们引用的包,最后是我们自己写的,保证了java程序的稳定性。
19,jdk,jre,JVM的关系:JDK(Java Development Kit) 是 Java 语言的软件开发工具包(SDK)。在JDK的安装目录下有一个jre目录,里面有两个文件夹bin和lib,在这里可以认为bin里的就是jvm,lib中则是jvm工作所需要的类库,而jvm和 lib合起来就称为jre。
jdk,jre,JVM的关系图:
20,JVM运行简易过程:
上图左半部分其实不是在JVM中,程序员在eclipse上写的是.java文件,经过编译成.class文件(比如maven工程需要maven install,打成jar报,jar包里面都是.calss文件);这些步骤都是在eclipse上进行的。然后类加载器(classloader)一直到解释器是属于JVM的
上图左半部分其实不是在JVM中,程序员在eclipse上写的是.java文件,经过编译成.class文件(比如maven工程需要maven install,打成jar报,jar包里面都是.calss文件);这些步骤都是在eclipse上进行的。然后类加载器(classloader)一直到解释器是属于JVM的
 
21,解释13中JVM结构图各模块的内容:
程序计数器(Program Counter Register):也叫PC寄存器,是一块较小的内存空间,它可以看做是当前线程所执行的字节码的行号指示器。在虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令、分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。
(1),区别于计算机硬件的pc寄存器,两者不略有不同。计算机用pc寄存器来存放“伪指令”或地址,而相对于虚拟机,pc寄存器它表现为一块内存(一个字长,虚拟机要求字长最小为32位),虚拟机的pc寄存器的功能也是存放伪指令,更确切的说存放的是将要执行指令的地址。
(2)当虚拟机正在执行的方法是一个本地(native)方法的时候,jvm的pc寄存器存储的值是undefined。
(3)程序计数器是线程私有的,它的生命周期与线程相同,每个线程都有一个。
(4)此内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。
 
Java虚拟机栈(Java Virtual Machine Stack):
(1)线程私有的,它的生命周期与线程相同,每个线程都有一个。
(2)每个线程创建的同时会创建一个JVM栈,JVM栈中每个栈帧存放的为当前线程中局部基本类型的变量(java中定义的八种基本类型:boolean、char、byte、short、int、long、float、double;和reference (32 位以内的数据类型,具体根据JVM位数(64为还是32位)有关,因为一个solt(槽)占用32位的内存空间 )、部分的返回结果,非基本类型的对象在JVM栈上仅存放一个指向堆上的地址;
(3)每一个方法从被调用直至执行完成的过程就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。
(4)栈运行原理:栈中的数据都是以栈帧(Stack Frame)的格式存在,栈帧是一个内存区块,是一个数据集,是一个有关方法和运行期数据的数据集,当一个方法A被调用时就产生了一个栈帧F1,并被压入到栈中,A方法又调用了B方法,于是产生栈帧F2也被压入栈,B方法又调用了C方法,于是产生栈帧F3也被压入栈…… 依次执行完毕后,先弹出后进......F3栈帧,再弹出F2栈帧,再弹出F1栈帧。
(5)JAVA虚拟机栈的最小单位可以理解为一个个栈帧,一个方法对应一个栈帧,一个栈帧可以执行很多指令,如下图:

 

(6)对上图中的动态链接解释下,比如当出现main方法需要调用method1()方法的时候
,操作指令就会触动这个动态链接就会找到方法区中对应的method1(),然后把method1()方法压入虚拟机栈中,执行method1栈帧的指令;此外如果指令表示的代码是个常量,这也是个动态链接,也会到方法区中的运行时常量池找到类加载时就专门存放变量的运行时常量池的数据。
 
本地方法栈(Native Method Stack):
(1)先解释什么是本地方法:jvm中的本地方法是指方法的修饰符是带有native的但是方法体不是用java代码写的一类方法,这类方法存在的意义当然是填补java代码不方便实现的缺陷而提出的。案例介绍将在 下面22知识点仔细介绍。
(2)作用同java虚拟机栈类似,区别是:虚拟机栈为虚拟机执行Java方法服务,而本地方法栈则是为虚拟机使用到的Native方法服务。
(3)是线程私有的,它的生命周期与线程相同,每个线程都有一个。
 
Java 堆(Java Heap):
(1)是Java虚拟机所管理的内存中最大的一块。
(2)不同于上面3个,堆是jvm所有线程共享的。
(3)在虚拟机启动的时候创建。
(4)唯一目的就是存放对象实例,几乎所有的对象实例以及数组都要在这里分配内存。
(5) Java堆是垃圾收集器管理的主要区域。
(6)因此很多时候java堆也被称为“GC堆”(Garbage Collected Heap)。从内存回收的角度来看,由于现在收集器基本都采用分代收集算法,所以Java堆还可以细分为:新生代和老年代;新生代又可以分为:Eden 空间、From Survivor空间、To Survivor空间。(23知识点详细介绍)
(7)java堆是计算机物理存储上不连续的、逻辑上是连续的,也是大小可调节的(通过-Xms和-Xmx控制)。
(8)如果在堆中没有内存完成实例的分配,并且堆也无法再扩展时,将会抛出OutOfMemoryError异常。
 
方法区(Method Area):
(1)在虚拟机启动的时候创建。
(2)所有jvm线程共享。
(3)除了和堆一样不需要不连续的内存空间和可以固定大小或者可扩展外,还可以选择不实现垃圾收集。
(5)用于存放已被虚拟机加载的类信息、常量、静态变量、以及编译后的方法实现的二进制形式的机器指令集等数据。
(4)被装载的class的信息存储在Methodarea的内存中。当虚拟机装载某个类型时,它使用类装载器定位相应的class文件,然后读入这个class文件内容并把它传输到虚拟机中。
(6)运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后进入方法区的运行时常量池中存放。
方法区补充:指令集是个非常重要概念,因为程序员写的代码其实在jvm虚拟机中是被转成了一条条指令集执行的,看下图

 

 

首先看看上面各部位位于13图中的那些位置:左侧的foo代码是指令集,可见就是在方法区,程序计数器就不用说了,局部变量区位于虚拟机栈中,右侧最下方的求值栈(也就是操作数栈)我们从动图中明显可以看出存在栈顶这个关键词因此也是位于java虚拟机栈的。
另外,图中,指令是Java代码经过javac编译后得到的JVM指令,PC寄存器指向下一条该执行的指令地址,局部变量区存储函数运行中产生的局部变量,栈存储计算的中间结果和最后结果。
上图的执行的源代码是:
public class Demo {

 

    public static void foo() {

 

       int a = 1;

 

       int b = 2;

 

       int c = (a + b) * 5;

 

    }

 

}

下面简单解释下执行过程,注意:偏移量的数字只是简单代表第几个指令哦,首先常数1入栈,栈顶元素就是1,然后栈顶元素移入局部变量区存储,常数2入栈,栈顶元素变为2,然后栈顶元素移入局部变量区存储;接着1,2依次再次入栈,弹出栈顶两个元素相加后结果入栈,将5入栈,栈顶两个元素弹出并相乘后结果入栈,然后栈顶变为15,最后移入局部变量。执行return命令如果当前线程对应的栈中没有了栈帧,这个Java栈也将会被JVM撤销。

猜你喜欢

转载自www.cnblogs.com/chxyshaodiao/p/12428046.html
今日推荐