windows下使用训练好的caffemodel做分类

随着深度学习的发展,越来越多的人开始进入这个行业,希望可以有所进展,但是各行业的大牛们,速度超神,deep哈希、deep稀疏、deep做分类、识别、跟踪、等等。很多人也开始训练自己的数据集或者下载别人训练好的model。训练好的caffemodel怎么使用对于刚入门的深度学习人来说是比较困难的,或者怎么用模型去验证自己的数据集等等
下面就从以下方向来说明怎么使用训练好model来预测自己的图片
1:编译caffe for windows
微软提供Windows工具包(caffe-master):https://github.com/Microsoft/caffe
此版严格只支持VS2013。此版本无需配置任何第三方环境哦,因为在项目属性里面都已经包含进去了,非常方便。如果出现了一些文件打不开或者其它问题,第一可能是VS自身问题,第二可能你配置过其它caffe,修改过环境变量,导致找不到头文件之类的。
caffe for windows的编译:
可以参考我的博客:
http://blog.csdn.net/shakevincent/article/details/51694686
http://m.blog.csdn.net/article/details?id=51355143
http://m.blog.csdn.net/article/details?id=51549105
编译好caffe-windows后删除其他不需要的工程,仅保留caffelib 和classfication工程。
打开classfication工程里面的classfication.cpp函数修改:


#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif  // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include <iostream>  
#include <string>  
#include <sstream>  
#include "io.h"

#include "stdio.h"
#include "stdlib.h" 
#include "time.h" 


#ifdef USE_OPENCV
using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;

class Classifier {
public:
    Classifier(const string& model_file,
        const string& trained_file,
        const string& mean_file,
        const string& label_file);

    std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

private:
    void SetMean(const string& mean_file);

    std::vector<float> Predict(const cv::Mat& img);

    void WrapInputLayer(std::vector<cv::Mat>* input_channels);

    void Preprocess(const cv::Mat& img,
        std::vector<cv::Mat>* input_channels);

private:
    shared_ptr<Net<float> > net_;
    cv::Size input_geometry_;
    int num_channels_;
    cv::Mat mean_;
    std::vector<string> labels_;
};

Classifier::Classifier(const string& model_file,
    const string& trained_file,
    const string& mean_file,
    const string& label_file) {
#ifdef CPU_ONLY
    Caffe::set_mode(Caffe::CPU);
#else
    Caffe::set_mode(Caffe::GPU);
#endif

    /* Load the network. */
    net_.reset(new Net<float>(model_file, TEST));
    net_->CopyTrainedLayersFrom(trained_file);

    CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
    CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

    Blob<float>* input_layer = net_->input_blobs()[0];
    num_channels_ = input_layer->channels();
    CHECK(num_channels_ == 3 || num_channels_ == 1)
        << "Input layer should have 1 or 3 channels.";
    input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

    /* Load the binaryproto mean file. */
    SetMean(mean_file);

    /* Load labels. */
    std::ifstream labels(label_file.c_str());
    CHECK(labels) << "Unable to open labels file " << label_file;
    string line;
    while (std::getline(labels, line))
        labels_.push_back(string(line));

    Blob<float>* output_layer = net_->output_blobs()[0];
    CHECK_EQ(labels_.size(), output_layer->channels())
        << "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair<float, int>& lhs,
    const std::pair<float, int>& rhs) {
    return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
    std::vector<std::pair<float, int> > pairs;
    for (size_t i = 0; i < v.size(); ++i)
        pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));
    std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

    std::vector<int> result;
    for (int i = 0; i < N; ++i)
        result.push_back(pairs[i].second);
    return result;
}

/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
    std::vector<float> output = Predict(img);

    N = std::min<int>(labels_.size(), N);
    std::vector<int> maxN = Argmax(output, N);
    std::vector<Prediction> predictions;
    for (int i = 0; i < N; ++i) {
        int idx = maxN[i];
        predictions.push_back(std::make_pair(labels_[idx], output[idx]));
    }

    return predictions;
}

/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
    BlobProto blob_proto;
    ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

    /* Convert from BlobProto to Blob<float> */
    Blob<float> mean_blob;
    mean_blob.FromProto(blob_proto);
    CHECK_EQ(mean_blob.channels(), num_channels_)
        << "Number of channels of mean file doesn't match input layer.";

    /* The format of the mean file is planar 32-bit float BGR or grayscale. */
    std::vector<cv::Mat> channels;
    float* data = mean_blob.mutable_cpu_data();
    for (int i = 0; i < num_channels_; ++i) {
        /* Extract an individual channel. */
        cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
        channels.push_back(channel);
        data += mean_blob.height() * mean_blob.width();
    }

    /* Merge the separate channels into a single image. */
    cv::Mat mean;
    cv::merge(channels, mean);

    /* Compute the global mean pixel value and create a mean image
    * filled with this value. */
    cv::Scalar channel_mean = cv::mean(mean);
    mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

std::vector<float> Classifier::Predict(const cv::Mat& img) {
    Blob<float>* input_layer = net_->input_blobs()[0];
    input_layer->Reshape(1, num_channels_,
        input_geometry_.height, input_geometry_.width);
    /* Forward dimension change to all layers. */
    net_->Reshape();

    std::vector<cv::Mat> input_channels;
    WrapInputLayer(&input_channels);

    Preprocess(img, &input_channels);

    net_->Forward();

    /* Copy the output layer to a std::vector */
    Blob<float>* output_layer = net_->output_blobs()[0];
    const float* begin = output_layer->cpu_data();
    const float* end = begin + output_layer->channels();
    return std::vector<float>(begin, end);
}

/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
    Blob<float>* input_layer = net_->input_blobs()[0];

    int width = input_layer->width();
    int height = input_layer->height();
    float* input_data = input_layer->mutable_cpu_data();
    for (int i = 0; i < input_layer->channels(); ++i) {
        cv::Mat channel(height, width, CV_32FC1, input_data);
        input_channels->push_back(channel);
        input_data += width * height;
    }
}

void Classifier::Preprocess(const cv::Mat& img,
    std::vector<cv::Mat>* input_channels) {
    /* Convert the input image to the input image format of the network. */
    cv::Mat sample;
    if (img.channels() == 3 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
    else if (img.channels() == 4 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
    else if (img.channels() == 4 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
    else if (img.channels() == 1 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
    else
        sample = img;

    cv::Mat sample_resized;
    if (sample.size() != input_geometry_)
        cv::resize(sample, sample_resized, input_geometry_);
    else
        sample_resized = sample;

    cv::Mat sample_float;
    if (num_channels_ == 3)
        sample_resized.convertTo(sample_float, CV_32FC3);
    else
        sample_resized.convertTo(sample_float, CV_32FC1);

    cv::Mat sample_normalized;
    cv::subtract(sample_float, mean_, sample_normalized);

    /* This operation will write the separate BGR planes directly to the
    * input layer of the network because it is wrapped by the cv::Mat
    * objects in input_channels. */
    cv::split(sample_normalized, *input_channels);

    CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
        == net_->input_blobs()[0]->cpu_data())
        << "Input channels are not wrapping the input layer of the network.";
}
//获取路径path下的文件,并保存在files容器中  
void getFiles(string path, vector<string>& files)
{
    //文件句柄  
    long   hFile = 0;
    //文件信息  
    struct _finddata_t fileinfo;
    string p;
    if ((hFile = _findfirst(p.assign(path).append("\\*").c_str(), &fileinfo)) != -1)
    {
        do
        {
            if ((fileinfo.attrib &  _A_SUBDIR))
            {
                if (strcmp(fileinfo.name, ".") != 0 && strcmp(fileinfo.name, "..") != 0)
                    getFiles(p.assign(path).append("\\").append(fileinfo.name), files);
            }
            else
            {
                files.push_back(p.assign(path).append("\\").append(fileinfo.name));
            }
        } while (_findnext(hFile, &fileinfo) == 0);
        _findclose(hFile);
    }
}

int main(int argc, char** argv) {
    string model_file("../model/deploy.prototxt");
    string trained_file("../model/type.caffemodel");
    string mean_file("../model/type_mean.binaryproto");
    string label_file("../model/labels.txt");
    string picture_path("../model/type");

    Classifier classifier(model_file, trained_file, mean_file, label_file);
    vector<string> files;
    getFiles(picture_path, files);


    for (int i = 0; i < files.size(); i++)
    {
        clock_t start, finish;
        double   duration;
        start = clock();
        cv::Mat img = cv::imread(files[i], -1);
        cv::Mat img2;

        std::vector<Prediction> predictions = classifier.Classify(img);
        //Prediction p = predictions[i];

        IplImage* show;
        CvSize sz;
        sz.width = img.cols;
        sz.height = img.rows;
        float scal = 0;
        scal = sz.width > sz.height ? (300.0 / (float)sz.height) : (300.0 / (float)sz.width);
        sz.width *= scal;
        sz.height *= scal;
        resize(img, img2, sz, 0, 0, CV_INTER_LINEAR);
        show = cvCreateImage(sz, IPL_DEPTH_8U, 3);
        cvCopy(&(IplImage)img2, show);
        CvFont font;
        cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX, 0.5, 0.5, 0, 1, 8);  //初始化字体  
        //cvPutText(show, text.c_str(), cvPoint(10, 30), &font, cvScalar(0, 0, 255, NULL));
        string name_text;
        name_text = files[i].substr(files[i].find_last_of("\\") + 1);
        name_text = "Test picture ID::"+ name_text;
        cvPutText(show, name_text.c_str(), cvPoint(10, 130), &font, cvScalar(0, 0, 255, NULL));
        for (size_t i = 0; i < predictions.size(); ++i)
        {
            Prediction p = predictions[i];
            std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
                << p.first << "\"" << std::endl;
            string text = p.first;
            char buff[20];
            _gcvt(p.second, 4, buff);
            text = text + ":" + buff;

            /***************************输出英文标签*****************************************/

            //CvFont font;
            //cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX, 0.5, 0.5, 0, 1, 8);  //初始化字体  
            //cvPutText(show, text.c_str(), cvPoint(10, 30), &font, cvScalar(0, 0, 255, NULL));
            //string name_text;
            cvPutText(show, text.c_str(), cvPoint(10, 30 + i * 20), &font, cvScalar(0, 0, 255, NULL));

            /**********************************************************************************/

            cvNamedWindow("结果");
            cvShowImage("结果", show);
            cvWaitKey(1);

        }
        finish = clock();
        duration = (double)(finish - start) / CLOCKS_PER_SEC;
        printf("Time to do is ::");
        printf("%f seconds\n", duration);
        int c = cvWaitKey();
        cvDestroyWindow("结果");
        cvReleaseImage(&show);
        std::cout << "///////////////////////////////////////////////////////////" << std::endl;
        if (c == 27)
        {
            return 0;
        }
    }
    return 0;
}
#else
int main(int argc, char** argv) {
    LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif  // USE_OPENCV


1:下载model:这里使用训练好的车辆识别的model
2:修改一下文件:

    string model_file("../model/deploy.prototxt");
    string trained_file("../model/type.caffemodel");
    string mean_file("../model/type_mean.binaryproto");
    string label_file("../model/labels.txt");
    string picture_path("../model/type");//测试图片的路径

简单修改后就可以使用了。
这里写图片描述

model下载地址:链接:http://pan.baidu.com/s/1hs3CF9y 密码:j7m4

猜你喜欢

转载自blog.csdn.net/shakevincent/article/details/52995253