聊一聊粗糙集(五)

本节我们将继续介绍粗糙集有关的概念。


上节我们介绍了知识粒度的度量,本节将介绍知识粒度的矩阵表示形式。

我们先简单介绍矩阵的相关概念。

矩阵

先看矩阵的和,差。

矩阵的和:
\(A=(a_{ij})_{m \times n}\)\(B=(b_{ij})_{m \times n}\)是两个\(m \times n\)的矩阵,则两个矩阵的和\(C=(c_{ij})_{m \times n}\)
\[ C = A+B \quad \Longrightarrow \quad c_{ij}=a_{ij}+b_{ij} \]

\[ =\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{bmatrix} \]

\[ =\begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1n}+b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn} \\ \end{bmatrix} \]

类似的,两个矩阵的差:
\[ C = A-B \quad \Longrightarrow \quad c_{ij}=a_{ij}-b_{ij} \]

\[ = \begin{bmatrix} a_{11}-b_{11} & a_{12}-b_{12} & \cdots & a_{1n}-b_{1n} \\ a_{21}-b_{21} & a_{22}-b_{22} & \cdots & a_{2n}-b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}-b_{m1} & a_{m2}-b_{m2} & \cdots & a_{mn}-b_{mn} \\ \end{bmatrix} \]
矩阵的转置:
\[ A= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix} \]

则矩阵\(A\)的转置矩阵\(A^T\)为:
\[ A^T= \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \\ \end{bmatrix} \]
最后来看矩阵的乘积:
\(A=(a_{ij})_{m \times n}\)\(B=(b_{ij})_{n \times p}\)是两个矩阵
则两个矩阵的乘积\(A \times B =C=(c_{ij})_{m \times p}\) 为:
\[ C = A \times B \quad \Longrightarrow \quad (c_{ij})_{m \times p}=(\sum_{k=1}^{n} a_{ik}\cdot b_{kj})_{m \times p} \]

\[ = \begin{bmatrix} \sum_{k=1}^{n} a_{1k}b_{k1} & \sum_{k=1}^{n}a_{1k}b_{k2} & \cdots & \sum_{k=1}^{n} a_{1k}b_{kp} \\ \sum_{k=1}^{n} a_{2k}b_{k1} & \sum_{k=1}^{n}a_{2k}b_{k2} & \cdots & \sum_{k=1}^{n} a_{2k}b_{kp} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{mk}b_{k1} & \sum_{k=1}^{n}a_{mk}b_{k2} & \cdots & \sum_{k=1}^{n} a_{mk}b_{kp} \\ \end{bmatrix} \]

知识粒度的矩阵表现形式

我们依旧使用该表

\(U\) \(a\) \(b\) \(c\) \(e\) \(f\) \(d\)
1 0 1 1 1 0 1
2 1 1 0 1 0 1
3 1 0 0 0 1 0
4 1 1 0 1 0 1
5 1 0 0 0 1 0
6 0 1 1 1 1 0
7 0 1 1 1 1 0
8 1 0 0 1 0 1
9 1 0 0 1 0 0

等价关系矩阵的定义如下:
\(S=(U,A=C \bigcup D,V,f)\)是一个决策信息系统,论域\(U=\{u_{1},u_{2},...,u_{n} \}\)\(n\)是论域内元素个数,\(U/C=\{X_{1},X_{2},...,X_{m}\}\)\(R_{C}\)是论域\(U\)的等价关系。则等价关系矩阵\(U_{U}^{R_{C}} = (m_{ij})_{n \times n}\)定义如下:
\[ m_{ij} =\begin{cases} 1 & (u_{i},u_{j}) \in R_{C} \\ 0 & (u_{i},u_{j}) \notin R_{C} \end{cases} \]

其中,\({1 \leq i,j \leq n}\)

基于矩阵的知识粒度如下:
\(S=(U,A=C \bigcup D,V,f)\)是一个决策信息系统,\(U_{U}^{R_{C}} = (m_{ij})_{n \times n}\)是等价关系矩阵,条件属性\(C\)基于矩阵的知识粒度定义如下:
\[ GP_{U}(C)=\frac{sum\left(M_{U}^{R_{C}}\right)}{|U|^{2}}=\overline{M_{U}^{R_{C}}} \]
其中,\(sum\left(M_{U}^{R_{C}}\right)\)是等价矩阵内\(1\)的个数总和,\(\overline{M_{U}^{R_{C}}}\)是矩阵内所有元素的均值。

依旧上表,我们可以计算\(GP_{U}(C)\):
\[ GP_{U}(C)=\overline{M_{U}^{R_{C}}}=\frac{1}{81}\times\operatorname{sum}(\left[\begin{array}{ccccccccc} {1} & {0} & {0} & {0} & {0} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\ {0} & {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {1} & {1} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {1} & {1} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {0} & {0} & {1} & {1} \\ {0} & {0} & {0} & {0} & {0} & {0} & {0} & {1} & {1} \end{array}\right])=\frac{17}{81} \]

这和我们在上节计算得到的结果是一致的。

类似的,相对知识粒度的定义如下:
\(S=(U,A=C \bigcup D,V,f)\)是一个决策信息系统,\(U_{U}^{R_{C}}\)\(U_{U}^{R_{C \bigcup D}}\)是等价关系矩阵,则决策属性\(D\)关于条件属性\(C\)基于矩阵的相对知识粒度定义如下:
\[ G P_{U}(D\mid C)=\overline{U_{U}^{R_{C}}}-\overline{U_{U}^{R_{C \bigcup D}}} \]

根据上表,我们可以计算\(GP_{U}(D \mid C)\):
\[ GP_{U}(D \mid C)=\overline{U_{U}^{R_{C}}}-\overline{U_{U}^{R_{C \bigcup D}}} \]

\[ =\frac{1}{81}\times\operatorname{sum}(\left[\begin{array}{ccccccccc} {1} & {0} & {0} & {0} & {0} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\ {0} & {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\ {0} & {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {1} & {1} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {1} & {1} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {0} & {0} & {1} & {1} \\ {0} & {0} & {0} & {0} & {0} & {0} & {0} & {1} & {1} \end{array}\right] - \left[\begin{array}{ccccccccc} {1} & {0} & {0} & {0} & {0} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\ {0} & {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\ {0} & {0} & {1} & {0} & {1} & {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {1} & {1} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {1} & {1} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {0} & {0} & {1} & {0} \\ {0} & {0} & {0} & {0} & {0} & {0} & {0} & {0} & {1} \end{array}\right]) =\frac{2}{81} \]
这与我们之前计算的结果是一致的。

类似的,基于矩阵的内外部属性重要度的定义如下:
内部属性重要度:
\(S=(U,A=C \bigcup D,V,f)\)是一个决策信息系统,\(B\subseteq C\),且\(U_{U}^{R_{B}}\)\(U_{U}^{R_{B-\{a\} }}\),\(U_{U}^{R_{B \bigcup D}}\),\(U_{U}^{R_{(B -\{a\}) \bigcup D}}\)都是等价关系矩阵,\(\forall a \in B\),则属性\(a\)关于条件属性\(B\)相对于决策属性集\(D\)的基于矩阵的相对知识粒度定义如下:
\[ \operatorname{Sig}_{U}^{inner }(a, B, D)=GP_{U}(D \mid B-\{a\})-GP_{U}(D \mid B) \]

\[ =\{ GP_{U}(B-\{a\})-GP_{U}((B-\{a\}) \bigcup D) \}-\{GP_{U}(B)-GP_{U}(B \bigcup D) \} \]

\[ =\overline{M_{U}^{R_{B-\{a \}}}}-\overline{M_{U}^{R_{(B -\{a\}) \bigcup D}}}-\overline{M_{U}^{R_{B}}}+\overline{M_{U}^{R_{B \bigcup D}}} \]

外部属性重要度:
\(S=(U,A=C \bigcup D,V,f)\)是一个决策信息系统,\(B\subseteq C\),且\(U_{U}^{R_{B}}\)\(U_{U}^{R_{B \bigcup D}}\),\(U_{U}^{R_{B \bigcup \{a\} }}\),\(U_{U}^{R_{(B \bigcup \{a\}) \bigcup D}}\)都是等价关系矩阵,\(\forall a \in (C-B)\),则属性\(a\)关于条件属性\(B\)相对于决策属性集\(D\)的基于矩阵的相对知识粒度定义如下:
\[ \operatorname{Sig}_{U}^{outer }(a, B, D)=GP_{U}(D \mid B)-GP_{U}(D \mid B \bigcup \{a\}) \]

\[ =\{ GP_{U}(B)-GP_{U}(B\bigcup D)\} - \{ GP_{U}(B \bigcup \{a\})-GP_{U}((B\bigcup \{a\}) \bigcup D) \} \]

\[ =\overline{M_{U}^{R_{B}}}-\overline{M_{U}^{R_{B \bigcup D}}}-\overline{M_{U}^{R_{B \bigcup \{a \} }}}+\overline{M_{U}^{R_{(B \bigcup \{a\}) \bigcup D}}} \]

参考上节的案例,如果使用矩阵表示的话,结果是一样的,但是基于矩阵的方式在面对大规模数据集是可能不是好的选择。


本文参考了:

  • 景运革. 基于知识粒度的动态属性约简算法研究[D].西南交通大学,2017.

猜你喜欢

转载自www.cnblogs.com/Gedanke/p/12359384.html