windows系统下使用关键段和事件内核对象实现读写锁

先做一点CreateEvent的实验:

HANDLE _event;
HANDLE _pthread;

DWORD WINAPI thread(void* lparam)
{
	SetEvent(_event);
	SetEvent(_event);

	return 0;
}

int main(int argc, char* argv[])
{
	_event = ::CreateEvent(NULL, FALSE, FALSE, NULL);
	assert(_event != 0);

	_pthread = CreateThread(NULL, 0, thread, NULL, 0, NULL);
	assert(_pthread != 0);

	Sleep(10000);

	WaitForSingleObject(_event, INFINITE);

	printf("the event done 1.\n");

	WaitForSingleObject(_event, INFINITE);

	printf("the event done 2.\n");

	WaitForSingleObject(_pthread, INFINITE);


	return 0;
}

 读写锁实现源码:

#include <stdio.h>
#include <assert.h>
#include <windows.h>


class rwlock
{
public:
	/**
	* 读写锁状态:
	* LOCK_READ:  读状态
	* LOCK_WRITE: 写状态
	*/
	enum LOCK_TYPE { LOCK_READ = 0x12, LOCK_WRITE };

	rwlock()
	{
		_count = 0;
		_type = LOCK_READ;
		_event = ::CreateEvent(NULL, FALSE, TRUE, NULL);
		::InitializeCriticalSection(&_glock);
	}

	~rwlock()
	{
		assert(_count == 0);
		::CloseHandle(_event);
		::DeleteCriticalSection(&_glock);
	}

public:

	/* 写锁 */
	void wrlock()
	{
		::EnterCriticalSection(&_glock);

		/* 写锁阻塞条件很简单,只要有对锁定数据的读写操作就会阻塞 */
		if (_count > 0) {
			::WaitForSingleObject(_event, INFINITE);
		}

		::InterlockedDecrement(&_count);
		_type = LOCK_WRITE;
		::LeaveCriticalSection(&_glock);
	}

	/* 释放写锁 */
	void wrunlock()
	{
		::InterlockedDecrement(&_count);
		SetEvent(_event);
	}

	/* 读锁 */
	void rdlock()
	{
		::EnterCriticalSection(&_glock);

		/* 读锁的阻塞条件,_count == 0或者_count > 0 && _type == LOCK_READ */
		if ((_count != 0) && (_count > 0 && _type !=  LOCK_READ)) {
			::WaitForSingleObject(_event, INFINITE);
		}

		::InterlockedIncrement(&_count);
		_type = LOCK_READ;
		::LeaveCriticalSection(&_glock);
	}

	void rdunlock()
	{
		/* 释放读锁 */
		::InterlockedDecrement(&_count);
		SetEvent(_event);
	}

private:
	volatile LONG _count;
	volatile LOCK_TYPE _type;

	HANDLE _event;
	CRITICAL_SECTION _glock;
};
发布了140 篇原创文章 · 获赞 65 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/paradox_1_0/article/details/103664906