golang源码分析--slice

切片基础概念:

切片是围绕动态数组的概念构建的,可以按需自动增长和缩小。(注意:切片传递的是指针的拷贝值,所以可以在函数里面修改指针指向的值,对外有影响)

切片的自动增长是通过append()函数来实现的

切片的底层内存也是在连续块中分配的,所以切片还能获得索引,迭代以及为垃圾回收优化的好处。

源码分析:

结构体定义

type slice struct {
	array unsafe.Pointer
	len   int
	cap   int
}

slice的结构体包含三个参数,指针,长度,容量
所以传递一个切片切片需要24字节的内存:指针字段需要8字节,长度和容量字段分别需要8字节。

切片作为函数传递需要注意的地方:

1.切片作为函数的参数在函数内改变值
切片作为参数可以节省空间,但是需要注意的是切片传递过去的值为指针,所以在函数中改变切片指向的值,在函数外也会有影响,这是由切片结构体内存储的指针特性决定的

func changevalue(arr []int){
	arr[0] = 2
	fmt.Println(&arr[0])
}

func main() {
	arr:=make([]int,0,2)
	arr = append(arr,1)
	fmt.Println(arr)
	changevalue(arr)
	fmt.Println(arr)
	fmt.Println(&arr[0])
}

输出

[1]
0xc0000601b0
[2]
0xc0000601b0

2.切片在函数中的append操作
append未在源码内找到实现方式,但是append的作用如下:
append函数将元素追加到slice的结尾,若切片还有生效的容量,则值直接追加到连续内存的后面。
若追加的值得数目大于切片的原容量,则申请一个新的底层数组,append返回更新的slice。
要注意,切片作为参数在函数中传递本质是是值传递,特殊点是它的值中有一个指针
不改变值得方式,append追加不改变函数外面的值,PS:哪怕追加至更改内存

func appendarrNoChange(arr []int){
	arr = append(arr,2)
	fmt.Println(&arr[0])
}

func main() {
	arr:=make([]int,0,2)
	arr = append(arr,1)
	fmt.Println(arr)
    appendarrNoChange(arr)
	fmt.Println(arr)
	fmt.Println(&arr[0])
}
[1]
0xc0000601b0
[1]
0xc0000601b0

func appendarrNoChange(arr []int){
	arr = append(arr,2)
	arr = append(arr,3)
	fmt.Println(&arr[0])
}


func main() {
	arr:=make([]int,0,2)
	arr = append(arr,1)
	fmt.Println(arr)
    appendarrNoChange(arr)
	fmt.Println(arr)
	fmt.Println(&arr[0])
}
[1]
0xc00005e2a0
[1]
0xc0000601b0

若需要append在函数生效:

func appendarrChange(arr []int)[]int{
	arr = append(arr,2)
	fmt.Println(&arr[0])
	arr = append(arr,3)
	fmt.Println(&arr[0])
	return arr
}
func main() {
	arr:=make([]int,0,2)
	arr = append(arr,1)
	fmt.Println(arr)
	arr = appendarrChange(arr)
	fmt.Println(arr)
	fmt.Println(&arr[0])
}

可以用append()完毕后获取到的新切片替代旧切片在函数外赋值

[1]
0xc00000a210
0xc00000e500
[1 2 3]
0xc00000e500

切片的初始化:

func makeslice(et *_type, len, cap int) unsafe.Pointer {
    //返回类型占的字节数目*容量值=要开辟的内存字节数
	mem, overflow := math.MulUintptr(et.size, uintptr(cap))
	//比对乘法是否溢出,要申请的内存是否少于能提供的最大内存
	if overflow || mem > maxAlloc || len < 0 || len > cap {
		// NOTE: Produce a 'len out of range' error instead of a
		// 'cap out of range' error when someone does make([]T, bignumber).
		// 'cap out of range' is true too, but since the cap is only being
		// supplied implicitly, saying len is clearer.
		// See golang.org/issue/4085.
		mem, overflow := math.MulUintptr(et.size, uintptr(len))
		if overflow || mem > maxAlloc || len < 0 {
			panicmakeslicelen()
		}
		panicmakeslicecap()
	}
	//申请内存
	return mallocgc(mem, et, true)
}

关于malloc分配的策略(因为本篇以slice为主,关于内存分配的部分放到后面详解,在此大致介绍):
若对象很小(<32kb),则从per-P缓存的空闲列表中分配空间(为单个goroutine分配的线程空间,不存在并发,所以使用的时候不用加锁,小对象分配在这上面运行效率会很高)
若对象大于32kb,则直接从堆中获取内存。

append增加内存的规律:

func growslice(et *_type, old slice, cap int) slice {
	if raceenabled {
		callerpc := getcallerpc()
		racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice))
	}
	if msanenabled {
		msanread(old.array, uintptr(old.len*int(et.size)))
	}
	//禁止缩小容量
	if cap < old.cap {
		panic(errorString("growslice: cap out of range"))
	}
	//类型为空指针则默认不保存原切片所有内容,但是保留长度,并以新的cap获取新内存(不知道什么时候会出现若有知晓的还望指教)
	if et.size == 0 {
		// append should not create a slice with nil pointer but non-zero len.
		// We assume that append doesn't need to preserve old.array in this case.
		return slice{unsafe.Pointer(&zerobase), old.len, cap}
	}
    
	newcap := old.cap
	doublecap := newcap + newcap
	//若新申请的cap大于旧的二倍,则取新的,否则取旧的
	if cap > doublecap {
		newcap = cap
	} else {
	  //若旧的长度小于1024,则乘以两倍,否则增加1.25倍
		if old.len < 1024 {
			newcap = doublecap
		} else {
			// Check 0 < newcap to detect overflow
			// and prevent an infinite loop.
			for 0 < newcap && newcap < cap {
				newcap += newcap / 4
			}
			// Set newcap to the requested cap when
			// the newcap calculation overflowed.
			if newcap <= 0 {
				newcap = cap
			}
		}
	}

	var overflow bool
	var lenmem, newlenmem, capmem uintptr
	// 根据不同单位值采取不同的计算方式
	switch {
	case et.size == 1:
	//若是1,则不需要做乘法
		lenmem = uintptr(old.len)
		newlenmem = uintptr(cap)
		capmem = roundupsize(uintptr(newcap))
		overflow = uintptr(newcap) > maxAlloc
		newcap = int(capmem)
	case et.size == sys.PtrSize:
		lenmem = uintptr(old.len) * sys.PtrSize
		newlenmem = uintptr(cap) * sys.PtrSize
		capmem = roundupsize(uintptr(newcap) * sys.PtrSize)
		overflow = uintptr(newcap) > maxAlloc/sys.PtrSize
		newcap = int(capmem / sys.PtrSize)
	case isPowerOfTwo(et.size):
		var shift uintptr
		if sys.PtrSize == 8 {
			// Mask shift for better code generation.
			shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
		} else {
			shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
		}
		lenmem = uintptr(old.len) << shift
		newlenmem = uintptr(cap) << shift
		capmem = roundupsize(uintptr(newcap) << shift)
		overflow = uintptr(newcap) > (maxAlloc >> shift)
		newcap = int(capmem >> shift)
	default:
		lenmem = uintptr(old.len) * et.size
		newlenmem = uintptr(cap) * et.size
		capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
		capmem = roundupsize(capmem)
		newcap = int(capmem / et.size)
	}

	// The check of overflow in addition to capmem > maxAlloc is needed
	// to prevent an overflow which can be used to trigger a segfault
	// on 32bit architectures with this example program:
	//
	// type T [1<<27 + 1]int64
	//
	// var d T
	// var s []T
	//
	// func main() {
	//   s = append(s, d, d, d, d)
	//   print(len(s), "\n")
	// }
	if overflow || capmem > maxAlloc {
		panic(errorString("growslice: cap out of range"))
	}

	var p unsafe.Pointer
	if et.kind&kindNoPointers != 0 {
		p = mallocgc(capmem, nil, false)
		// The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length).
		// Only clear the part that will not be overwritten.
		memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
	} else {
		// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
		p = mallocgc(capmem, et, true)
		if writeBarrier.enabled {
			// Only shade the pointers in old.array since we know the destination slice p
			// only contains nil pointers because it has been cleared during alloc.
			bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(old.array), lenmem)
		}
	}
	memmove(p, old.array, lenmem)

	return slice{p, old.len, newcap}
}

函数append会智能地处理底层数组的容量增长。在切片的容量小于1024个元素时,总是会成倍地增加容量,一旦元素个数超过1000,容量的增长因子会设为1.25,每次增长25%,实验如下。

func main() {
	arr:=make([]int,0,2)
	s:=cap(arr)
	for i:=0;i<2000;i++{
		arr = append(arr,i)
		t:=cap(arr)
		if t>s{
			s = t
			fmt.Println(t)
		}
	}
}
内容:
4 8 16 32 64 128 256 512 1024 1280 1696 2304
发布了212 篇原创文章 · 获赞 33 · 访问量 15万+

猜你喜欢

转载自blog.csdn.net/hello_bravo_/article/details/103772016