数列的构造

前言

典例剖析

例1 已知数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),数列\(\{a_n\}\)\(\cfrac{1}{2}\)\(\cfrac{1}{3}\)\(\cfrac{2}{3}\)\(\cfrac{1}{4}\)\(\cfrac{2}{4}\)\(\cfrac{3}{4}\)\(\cfrac{1}{5}\)\(\cfrac{2}{5}\)\(\cfrac{3}{5}\)\(\cfrac{4}{5}\)\(\cdots\)\(\cfrac{1}{n}\)\(\cfrac{2}{n}\)\(\cdots\)\(\cfrac{n-1}{n}\)\(\cdots\),若\(S_k=14\),则\(a_k=\cfrac{7}{8}\).

分析:注意到数列的项的特征,重新构造一个数列\(\{b_n\}\)

其中\(b_1=a_1=\cfrac{1}{2}\)

\(b_2=a_2+a_3=\cfrac{1}{3}+\cfrac{2}{3}=\cfrac{3}{3}=\cfrac{2}{2}=1\)

\(b_3=a_4+a_5+a_6=\cfrac{1}{4}+\cfrac{2}{4}+\cfrac{3}{4}=\cfrac{3}{2}\)

\(b_4=a_7+a_8+a_9+a_{10}=\cfrac{1}{5}+\cfrac{2}{5}+\cfrac{3}{5}+\cfrac{4}{5}=\cfrac{10}{5}=\cfrac{4}{2}=2\)

\(\cdots\)

\(b_{n-1}=\cfrac{1}{n}+\cfrac{2}{n}+\cdots+\cfrac{n-1}{n}=\cfrac{n-1}{2}\)

很显然,数列\(\{b_n\}\)是首项为\(\cfrac{1}{2}\),公差为\(\cfrac{1}{2}\)的等差数列,注意原来的数列\(\{a_n\}\)非等差非等比数列。

那么\(b_n=\cfrac{n}{2}\),其前\(n\)项和为\(T_n\),则\(T_n=\cfrac{1}{2}(\cfrac{1}{2}+\cfrac{n}{2})n=\cfrac{n(n+1)}{4}\)

\(T_n=\cfrac{n(n+1)}{4}=S_k=14\),则\(n=7\),即对数列\(\{b_n\}\)而言,\(T_7=14\)

对数列\(\{a_n\}\)而言,它的\(S_k=T_7\),但是注意\(k\neq 0\),按照这种对应性可知\(a_k=\cfrac{7}{8}\)

如果想计算\(k\)的值,那么\(k=1+2+3+4+5+6+7=28\)

猜你喜欢

转载自www.cnblogs.com/wanghai0666/p/12349651.html