3.3 Isomorphism

这一节把isomorphism单独阐述,即既是一对一又是onto的,也就是一个bijection。其本质可以用文中的一句话概括:isomorphism is an equivalence relation on the class of vector spaces。Theorem 10说明了所有n维vector space都和 F n F^n 是isomorphic的,实际上,isomorphism是“dimension preserving”。

Exercises

  1. Let V V be the set of complex numbers and let F F be the field of real numbers. With the usual operations, V V is a vector space over F F . Describe explicitly an isomorphism of this space onto R 2 R^2 .
    Solution: For any c = a + b i V c=a+bi∈V , define U ( c ) = ( a , b ) U(c)=(a,b) , then U U is an isomorphism of V V onto R 2 R^2 .

  2. Let V V be a vector space over the field of complex numbers, and suppose there is an isomorphism T T of V V onto C 3 C^3 . Let α 1 , α 2 , α 3 , α 4 \alpha_1,\alpha_2,\alpha_3,\alpha_4 be vectors in V V such that
    T α 1 = ( 1 , 0 , i ) , T α 2 = ( 2 , 1 + i , 0 ) , T α 3 = ( 1 , 1 , 1 ) , T α 4 = ( 2 , i , 3 ) . T\alpha_1=(1,0,i),\qquad T\alpha_2=(-2,1+i,0),\\T\alpha_3=(-1,1,1),\qquad T\alpha_4=(\sqrt2,i,3).
    ( a ) Is α 1 \alpha_1 in the subspace spanned by α 2 \alpha_2 and α 3 \alpha_3 ?
    ( b ) Let W 1 W_1 be the subspace spanned by α 1 \alpha_1 and α 2 \alpha_2 , and let W 2 W_2 be the subspace spanned by α 3 \alpha_3 and α 4 \alpha_4 . What is the intersection of W 1 W_1 and W 2 W_2 ?
    ( c ) Find a basis for the subspace of V V spanned by the four vectors α j \alpha_j .
    Solution:
    ( a ) It is easy to see T α 2 , T α 3 Tα_2,Tα_3 are linearly independent, thus α 2 , α 3 α_2,α_3 are linearly independent, since
    [ 1 0 i 2 1 + i 0 1 1 1 ] [ 1 0 i 0 1 + i 2 i 0 1 1 + i ] [ 1 0 i 0 1 1 + i 0 0 0 ] \begin{bmatrix}1&0&i\\-2&1+i&0\\-1&1&1\end{bmatrix}→\begin{bmatrix}1&0&i\\0&1+i&2i\\0&1&1+i\end{bmatrix}→\begin{bmatrix}1&0&i\\0&1&1+i\\0&0&0\end{bmatrix}
    T α 1 , T α 2 , T α 3 Tα_1,Tα_2,Tα_3 are linearly dependent, thus α 1 α_1 is in the subspace spanned by α 2 , α 3 α_2,α_3 .
    ( b ) From ( a ) we have ( 1 + i ) ( T α 2 + 2 T α 1 ) = T α 3 + T α 1 (1+i)(Tα_2+2Tα_1 )=Tα_3+Tα_1 , thus we have
    ( 1 + i ) ( α 2 + 2 α 1 ) = α 3 + α 1 (1+i)(α_2+2α_1 )=α_3+α_1
    Since T α 4 Tα_4 is not in the span of T α 1 , T α 2 Tα_1,Tα_2 , we have W 1 W 2 = { k α 3 : k C } W_1\cap W_2=\{kα_3:k∈C\} .
    ( c ) One basis can be ( α 1 , α 2 , α 4 ) (α_1,α_2,α_4) .

  3. Let W W be the set of all 2 × 2 2\times 2 complex Hermitian matrices, that is, the set of 2 × 2 2\times 2 complex matrices A A such that A i j = A j i A_{ij}=\overline{A_{ji}} (the bar denoting complex conjugation). As we pointed out in Example 6 of Chapter 2, W W is a vector space over the field of real numbers, under the usual operations. Verify that
    ( x , y , z , t ) [ t + x y + i z y i z t x ] (x,y,z,t)\to\begin{bmatrix}t+x&y+iz\\y-iz&t-x \end{bmatrix}
    is an isomorphism of R 4 R^4 onto W W .
    Solution: Denote T ( x , y , z , t ) = [ t + x y + i z y i z t x ] T(x,y,z,t)=\begin{bmatrix}t+x&y+iz\\y-iz&t-x\end{bmatrix} , if U ( x , y , z , t ) = 0 = [ 0 0 0 0 ] U(x,y,z,t)=0=\begin{bmatrix}0&0\\0&0\end{bmatrix} , then it is easy to see t + x = t x = 0 t+x=t-x=0 , thus t = x = 0 t=x=0 , and y + i z = 0 y+iz=0 means z = 0 z=0 and y = 0 y=0 . So T T is one-one. Next let any A W A∈W , then A = [ a 11 a 12 a 21 a 22 ] A=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} , since a 11 = a 11 \overline{a_{11}}=a_{11} we know a 11 R a_{11}∈R , also a 22 R a_{22}∈R , then we let
    t = a 11 + a 22 2 , x = a 11 a 22 2 , y = ( a 12 ) , z = ( a 12 ) t=\frac{a_{11}+a_{22}}{2},\quad x=\frac{a_{11}-a_{22}}{2},\quad y=\Re(a_{12}),\quad z=\Im(a_{12})
    it is easy to see T ( x , y , z , t ) = A T(x,y,z,t)=A .

  4. Show that F m × n F^{m\times n} is isomorphic to F m n F^{mn} .
    Solution: For any A = [ a 11 a 1 n a m 1 a m n ] F m × n A=\begin{bmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{m1}&\cdots&a_{mn}\end{bmatrix}∈F^{m×n} , we define T ( A ) = ( a 11 , , a 1 n , , a m 1 , , a m n ) T(A)=(a_{11},\dots,a_{1n},\dots,a_{m1},\dots,a_{mn}) , i.e., T ( A ) T(A) is a sequence of ordered list of the row vectors of A A . T T is an isomorphism from F m × n F^{m×n} to F m n F^{mn} .

  5. Let V V be the set of complex numbers regarded as a vector space over the field of real numbers (Exercise 1). We define a function T T from V V into the space of 2 × 2 2\times 2 real matrices, as follows. If z = x + i y z=x+iy with x x and y y real numbers, then
    T ( z ) = [ x + 7 y 5 y 10 y x 7 y ] . T(z)=\begin{bmatrix}x+7y&5y\\-10y&x-7y \end{bmatrix}.
    ( a ) Verify that T T is a one-one (real) linear transformation of V V into the space of 2 × 2 2\times 2 real matrices.
    ( b ) Verify that T ( z 1 z 2 ) = T ( z 1 ) T ( z 2 ) T(z_1z_2)=T(z_1)T(z_2) .
    ( c ) How would you describe the range of T T ?
    Solution:
    ( a ) It is enough to show T ( z ) = 0 T(z)=0 means z = 0 z=0 , it is easy to see
    [ x + 7 y 5 y 10 y x 7 y ] = [ 0 0 0 0 ] x = 0 , y = 0 \begin{bmatrix}x+7y&5y\\-10y&x-7y\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix} ⇒x=0,y=0
    ( b ) Let z 1 = a + b i , z 2 = c + d i z_1=a+bi,z_2=c+di , then z 1 z 2 = ( a c b d ) + ( a d + b c ) i z_1 z_2=(ac-bd)+(ad+bc)i , so
    T ( z 1 z 2 ) = [ a c b d + 7 ( a d + b c ) 5 ( a d + b c ) 10 ( a d + b c ) a c b d 7 ( a d + b c ) ] T(z_1 z_2 )=\begin{bmatrix}ac-bd+7(ad+bc)&5(ad+bc)\\-10(ad+bc)&ac-bd-7(ad+bc)\end{bmatrix}
    T ( z 1 ) T ( z 2 ) = [ a + 7 b 5 b 10 b a 7 b ] [ c + 7 d 5 d 10 d c 7 d ] = [ ( a + 7 b ) ( c + 7 d ) 50 b d 5 d ( a + 7 b ) + 5 b ( c 7 d ) 10 b ( c + 7 d ) 10 d ( a 7 b ) ( a 7 b ) ( c 7 d ) 50 b d ] = T ( z 1 z 2 ) \begin{aligned}T(z_1)T(z_2)&=\begin{bmatrix}a+7b&5b\\-10b&a-7b\end{bmatrix}\begin{bmatrix}c+7d&5d\\-10d&c-7d\end{bmatrix} \\&=\begin{bmatrix}(a+7b)(c+7d)-50bd&5d(a+7b)+5b(c-7d)\\-10b(c+7d)-10d(a-7b)&(a-7b)(c-7d)-50bd\end{bmatrix} \\&=T(z_1 z_2)\end{aligned}
    ( c ) The range of T T is the subspace of 2 × 2 2×2 matrices A A such that A 21 = 2 A 12 A_{21}=-2A_{12} .

  6. Let V V and W W be finite-dimensional vector spaces over the field F F . Prove that V V and W W are isomorphic if and only if dim V = dim W \dim V=\dim W .
    Solution: If V V and W W are isomorphic, then let T T be an isomorphism from V V to W W , and { a 1 , , a n } \{a_1,\dots,a_n \} be a basis of V V , so dim V = n \dim ⁡V=n , consider { T a 1 , , T a n } \{Ta_1,\dots,Ta_n \} , for any w W , w = T v , v V w∈W,w=Tv,v∈V , then we can find scalars x 1 , , x n x_1,\dots,x_n such that v = i = 1 n x i a i v=\sum_{i=1}^nx_i a_i , so w = T ( i = 1 n x i a i ) = i = 1 n x i T a i w=T(\sum_{i=1}^nx_i a_i)=\sum_{i=1}^nx_i Ta_i , so { T a 1 , , T a n } \{Ta_1,\dots,Ta_n \} spans W W . If i = 1 n x i T a i = 0 \sum_{i=1}^nx_i Ta_i=0 , then T ( i = 1 n x i a i ) = 0 T(\sum_{i=1}^nx_i a_i)=0 since T T is non-singular, then
    x i = 0 , i = 1 , , n x_i=0,\quad i=1,\dots,n
    which means { T a 1 , , T a n } \{Ta_1,\dots,Ta_n \} is linearly independent, we can conclude { T a 1 , , T a n } \{Ta_1,\dots,Ta_n \} is a basis of W W , and then dim W = n = dim V \dim ⁡W=n=\dim ⁡V .
    Conversely, if dim V = dim W : = n \dim ⁡V=\dim ⁡W:=n , then V V and W W are isomorphic to F n F^n , by Theorem 10, let T : V F n T:V→F^n and U : W F n U:W→F^n be two isomorphism, then U 1 T : V W U^{-1} T:V→W is an isomorphism.

  7. Let V V and W W be vector spaces over the field F F and let U U be an isomorphism of V V onto W W . Prove that T U T U 1 T\to UTU^{-1} is an isomorphism of L ( V , V ) L(V,V) onto L ( W , W ) L(W,W) .
    Solution: Denote M ( T ) = U T U 1 M(T)=UTU^{-1} , if M ( T ) = 0 M(T)=0 , then U T U 1 ( w ) = 0 UTU^{-1}(w)=0 for all w W w∈W , since U U is non-singular, we have T U 1 ( w ) = 0 TU^{-1}(w)=0 for all w W w∈W , given any v V v∈V , we can have some w W w∈W s.t. U 1 ( w ) = v U^{-1}(w)=v , so T v = 0 Tv=0 for all v V v∈V , thus T T is the zero transformation.
    For any M L ( W , W ) M'∈L(W,W) , if we choose a basis w 1 , , w n w_1,…,w_n of W W , then M M' can be written as
    M ( w i ) = a i 1 w 1 + + a i n w n , i = 1 , , n M'(w_i)=a_{i1} w_1+⋯+a_{in} w_n,\quad i=1,…,n
    Notice that U 1 ( w 1 ) , , U 1 ( w n ) U^{-1} (w_1),…,U^{-1}(w_n) is a basis for V V , so if we define
    T ( U 1 ( w i ) ) = a i 1 U 1 ( w 1 ) + + a i n U 1 ( w n ) , i = 1 , , n T(U^{-1}(w_i))=a_{i1} U^{-1}(w_1)+\cdots+a_{in}U^{-1}(w_n),\quad i=1,…,n
    then T L ( V , V ) T∈L(V,V) , and we have
    U T U 1 ( w i ) = U ( a i 1 U 1 ( w 1 ) + + a i n U 1 ( w n ) ) = a i 1 w 1 + + a i n w n , i = 1 , , n \begin{aligned}UTU^{-1}(w_i )&=U(a_{i1}U^{-1}(w_1)+\cdots+a_{in}U^{-1}(w_n))\\&=a_{i1} w_1+\cdots+a_{in}w_n,\quad i=1,…,n\end{aligned}
    this means M ( T ) = U T U 1 = M M(T)=UTU^{-1}=M' , thus M ( T ) M(T) is onto and the proof is complete.

发布了77 篇原创文章 · 获赞 14 · 访问量 2787

猜你喜欢

转载自blog.csdn.net/christangdt/article/details/103983446
3.3