u-boot 分析之 默认环境变量配置

通过上节内容,我们大概了解了Uboot中DDR的配置相关知识,这节我们学习一下默认环境变量配置。在zynq开发的时候,在u-boot阶段,有的环境变量需要在烧录后再设置,

在烧录之后都会有一些默认的环境变量比如bootarg等,如果在编译u-boot之前就把自己需要的变量设置好,烧录的时候直接就得到自己想要的变量,这在量产中是很方便的。

在哪里配置呢?经过研习,终于找到了,在这里include/configs/<你的板子名称>.h,如include/configs/zynq_zturn.h,环境变量的部分配置如下:

    #define CONFIG_EXTRA_ENV_SETTINGS        \
             "qboot_addr=0x000000\0"\
             "qbootenv_addr=0x080000\0"\
             "qbootenv_size=0x020000\0"\
             "qkernel_addr=0x500000\0"\
             "qdevtree_addr=0x980000\0"\
             "qramdisk_addr=0x990000\0"\
             "kernel_size=0x480000\0"      \
             "devicetree_size=0x010000\0"       \
             "ramdisk_size=0x600000\0"   \
             "boot_size=0x080000\0"         \
             "ethaddr=00:0a:35:00:01:22\0"     \
             "kernel_image=uImage\0"      \
             "kernel_load_address=0x2080000\0"\
             "ramdisk_image=uramdisk.image.gz\0"         \
             "ramdisk_load_address=0x4000000\0" \
             "devicetree_image=devicetree.dtb\0"   \
             "devicetree_load_address=0x2000000\0"     \
             "bitstream_image=system.bit.bin\0"     \
             "boot_image=BOOT.bin\0"     \
             "loadbit_addr=0x100000\0"   \
             "loadbootenv_addr=0x2000000\0"\
             "fdt_high=0x20000000\0"       \
             "initrd_high=0x20000000\0"  \
             "bootenv=uEnv.txt\0"\
             "loadbootenv=fatloadmmc 0 ${loadbootenv_addr} ${bootenv}\0" \
             "importbootenv=echoImporting environment from SD ...; " \
                       "envimport -t ${loadbootenv_addr} $filesize\0" \
             "mmc_loadbit_fat=echoLoading bitstream from SD/MMC/eMMC to RAM.. && " \
                       "get_bitstream_name&& mmcinfo && " \
                       "fatloadmmc 0 ${loadbit_addr} ${bitstream_image} && " \
                       "fpgaloadb 0 ${loadbit_addr} ${filesize}\0" \
             "norboot=echoCopying Linux from NOR flash to RAM... && " \
                       "cp.b0xE2100000 ${kernel_load_address} ${kernel_size} && " \
                       "cp.b0xE2600000 ${devicetree_load_address} ${devicetree_size} && " \
                       "echoCopying ramdisk... && " \
                       "cp.b0xE2620000 ${ramdisk_load_address} ${ramdisk_size} && " \
                       "bootm${kernel_load_address} ${ramdisk_load_address}${devicetree_load_address}\0" \
             "uenvboot="\
                       "ifrun loadbootenv; then " \
                                "echoLoaded environment from ${bootenv}; " \
                                "runimportbootenv; " \
                       "fi;" \
                       "iftest -n $uenvcmd; then " \
                                "echoRunning uenvcmd ...; " \
                                "runuenvcmd; " \
                       "fi\0"\
             "sdboot=ifmmcinfo; then " \
                                "runuenvboot; " \
                                "get_bitstream_name&& " \
                                "echo- load ${bitname} to PL... && " \
                                "fatloadmmc 0 0x200000 ${bitname} && " \
                                "fpgaloadb 0 0x200000 ${filesize} && " \
                                "echoCopying Linux from SD to RAM... && " \
                                "fatloadmmc 0 ${kernel_load_address} ${kernel_image} && " \
                                "fatloadmmc 0 ${devicetree_load_address} ${devicetree_image} && " \
                                "fatloadmmc 0 ${ramdisk_load_address} ${ramdisk_image} && " \
                                "bootm${kernel_load_address} ${ramdisk_load_address} ${devicetree_load_address};" \
                       "fi\0"\
             "usbboot=ifusb start; then " \
                                "runuenvboot; " \
                                "echoCopying Linux from USB to RAM... && " \
                                "fatloadusb 0 ${kernel_load_address} ${kernel_image} && " \
                                "fatloadusb 0 ${devicetree_load_address} ${devicetree_image} && " \
                                "fatloadusb 0 ${ramdisk_load_address} ${ramdisk_image} && " \
                                "bootm${kernel_load_address} ${ramdisk_load_address} ${devicetree_load_address};" \
                       "fi\0"\
             "nandboot=echoCopying Linux from NAND flash to RAM... && " \
                       "nandread ${kernel_load_address} 0x100000 ${kernel_size} && " \
                       "nandread ${devicetree_load_address} 0x600000 ${devicetree_size} && " \
                       "echoCopying ramdisk... && " \
                       "nandread ${ramdisk_load_address} 0x620000 ${ramdisk_size} && " \
                       "bootm${kernel_load_address} ${ramdisk_load_address}${devicetree_load_address}\0" \
             "jtagboot=echoTFTPing Linux to RAM... && " \
                       "tftpboot${kernel_load_address} ${kernel_image} && " \
                       "tftpboot${devicetree_load_address} ${devicetree_image} && " \
                       "tftpboot${ramdisk_load_address} ${ramdisk_image} && " \
                       "bootm${kernel_load_address} ${ramdisk_load_address}${devicetree_load_address}\0" \
             "rsa_norboot=echoCopying Image from NOR flash to RAM... && " \
                       "cp.b0xE2100000 0x100000 ${boot_size} && " \
                       "zynqrsa0x100000 && " \
                       "bootm${kernel_load_address} ${ramdisk_load_address}${devicetree_load_address}\0" \
             "rsa_nandboot=echoCopying Image from NAND flash to RAM... && " \
                       "nandread 0x100000 0x0 ${boot_size} && " \
                       "zynqrsa0x100000 && " \
                       "bootm${kernel_load_address} ${ramdisk_load_address}${devicetree_load_address}\0" \
             "rsa_qspiboot=echoCopying Image from QSPI flash to RAM... && " \
                       "sfprobe 0 0 0 && " \
                       "sfread 0x100000 0x0 ${boot_size} && " \
                       "zynqrsa0x100000 && " \
                       "bootm${kernel_load_address} ${ramdisk_load_address}${devicetree_load_address}\0" \
             "rsa_sdboot=echoCopying Image from SD to RAM... && " \
                       "fatloadmmc 0 0x100000 ${boot_image} && " \
                       "zynqrsa0x100000 && " \
                       "bootm${kernel_load_address} ${ramdisk_load_address}${devicetree_load_address}\0" \
             "rsa_jtagboot=echoTFTPing Image to RAM... && " \
                       "tftpboot0x100000 ${boot_image} && " \
                       "zynqrsa0x100000 && " \
                       "bootm${kernel_load_address} ${ramdisk_load_address}${devicetree_load_address}\0" \
             "qspiboot=echoCopying Linux from QSPI flash to RAM... && " \
                       "sfprobe 0 0 0 && " \
                       "qspi_get_bitsize0x0A0000 && " \
                       "sfread ${loadbit_addr} 0x0A0004 ${bitsize} && " \
                       "fpgaloadb 0 ${loadbit_addr} ${bitsize} && " \
                       "sfread ${kernel_load_address} ${qkernel_addr} ${kernel_size} && " \
                       "sfread ${devicetree_load_address} ${qdevtree_addr} ${devicetree_size} &&" \
                       "echoCopying ramdisk... && " \
                       "sfread ${ramdisk_load_address} ${qramdisk_addr} ${ramdisk_size} && "\
                       "bootm${kernel_load_address} ${ramdisk_load_address}${devicetree_load_address}\0" \
             "qspiupdate=echoUpdate qspi images from sd card... && " \
                       "echo- Init mmc... && mmc rescan && " \
                       "echo- Init qspi flash... && sf probe 0 0 0 && " \
                       "echo- Write boot.bin... && " \
                       "fatloadmmc 0 0x200000 boot.bin && " \
                       "sferase ${qboot_addr} ${boot_size} && " \
                       "sferase ${qbootenv_addr} ${qbootenv_size} && " \
                       "sfwrite 0x200000 0 ${filesize} && " \
                       "get_bitstream_name&& " \
                       "echo- Write ${bitstream_image}... && " \
                       "fatloadmmc 0 0x200000 ${bitstream_image} && " \
                       "sferase 0x0A0000 0x460000 && " \
                       "mw.l0x100000 ${filesize} && " \
                       "sfwrite 0x100000 0x0A0000 4 && " \
                       "sfwrite 0x200000 0x0A0004 ${filesize} && " \
                       "echo- Write uImage... && " \
                       "fatloadmmc 0 0x200000 uImage && " \
                       "sferase ${qkernel_addr} ${kernel_size} && " \
                       "sfwrite 0x200000 ${qkernel_addr} ${filesize} && " \
                       "echo- Write device tree... && " \
                       "fatloadmmc 0 0x200000 devicetree.dtb && " \
                       "sferase ${qdevtree_addr} ${devicetree_size} && " \
                       "sfwrite 0x200000 ${qdevtree_addr} ${filesize} && " \
                       "echo- Write Ramdisk... && " \
                       "fatloadmmc 0 0x200000 uramdisk.image.gz && " \
                       "sferase ${qramdisk_addr} ${ramdisk_size} && " \
                       "sfwrite 0x200000 ${qramdisk_addr} ${filesize} && " \
                       "echo- Done.\0"

u-boot的环境变量用来存储一些经常使用的参数变量,uboot希望将环境变量存储在静态存储器中(如nand nor eeprom mmc)。

其中有一些也是大家经常使用,有一些是使用人员自己定义的,更改这些名字会出现错误,下面的表中我们列出了一些常用的环境变量:

     bootdelay    执行自动启动的等候秒数
     baudrate     串口控制台的波特率
     netmask     以太网接口的掩码
     ethaddr       以太网卡的网卡物理地址
     bootfile        缺省的下载文件
     bootargs     传递给内核的启动参数
     bootcmd     自动启动时执行的命令
     serverip       服务器端的ip地址
     ipaddr         本地ip 地址
     stdin           标准输入设备
     stdout        标准输出设备
     stderr         标准出错设备

上面这些是uboot默认存在的环境变量,uboot本身会使用这些环境变量来进行配置。我们可以自己定义一些环境变量来供我们自己uboot驱动来使用。

Uboot环境变量的设计逻辑是在启动过程中将env从静态存储器中读出放到RAM中,之后在uboot下对env的操作(如printenv editenv setenv)都是对RAM中env的操作,只有在执行saveenv时才会将RAM中的env重新写入静态存储器中。

这种设计逻辑可以加快对env的读写速度。

基于这种设计逻辑,2014.4版本uboot实现了saveenv这个保存env到静态存储器的命令,而没有实现读取env到RAM的命令。

那我们就来看一下uboot中env的数据结构 初始化 操作如何实现的。

一 env数据结构

在include/environment.h中定义了env_t,如下:

    #ifdef CONFIG_SYS_REDUNDAND_ENVIRONMENT  
    # define ENV_HEADER_SIZE    (sizeof(uint32_t) + 1)  
    # define ACTIVE_FLAG   1  
    # define OBSOLETE_FLAG 0  
    #else  
    # define ENV_HEADER_SIZE    (sizeof(uint32_t))  
    #endif  
    #define ENV_SIZE (CONFIG_ENV_SIZE - ENV_HEADER_SIZE)  
    typedef struct environment_s {  
        uint32_t    crc;        /* CRC32 over data bytes    */  
    #ifdef CONFIG_SYS_REDUNDAND_ENVIRONMENT  
        unsigned char   flags;      /* active/obsolete flags    */  
    #endif  
        unsigned char   data[ENV_SIZE]; /* Environment data     */  
    } env_t;  


CONFIG_ENV_SIZE是我们需要在配置文件中配置的环境变量的总长度。

这里我们使用的nand作为静态存储器,nand的一个block是128K,因此选用一个block来存储env,CONFIG_ENV_SIZE为128K。

Env_t结构体头4个bytes是对data的crc校验码,没有定义CONFIG_SYS_REDUNDAND_ENVIRONMENT,所以后面紧跟data数组,数组大小是ENV_SIZE.

ENV_SIZE是CONFIG_ENV_SIZE减掉ENV_HEADER_SIZE,也就是4bytes,

所以env_t这个结构体就包含了整个我们规定的长度为CONFIG_ENV_SIZE的存储区域。

头4bytes是crc校验码,后面剩余的空间全部用来存储环境变量。

需要说明的一点,crc校验码是uboot中在saveenv时计算出来,然后写入nand,所以在第一次启动uboot时crc校验会出错,

因为uboot从nand上读入的一个block数据是随机的,没有意义的,执行saveenv后重启uboot,crc校验就正确了。

data 字段保存实际的环境变量。u-boot  的 env  按 name=value”\0”的方式存储,在所有env 的最后以”\0\0”表示整个 env  的结束。

新的name=value 对总是被添加到 env  数据块的末尾,当删除一个 name=value 对时,后面的环境变量将前移,对一个已经存在的环境变量的修改实际上先删除再插入。
u-boot 把env_t  的数据指针还保存在了另外一个地方,这就
是 gd_t  结构(不同平台有不同的 gd_t  结构 ),这里以ARM 为例仅列出和 env  相关的部分

    typedef struct global_data   
    {   
         …   
         unsigned long env_off;        /* Relocation Offset */   
         unsigned long env_addr;       /* Address of Environment struct ??? */   
         unsigned long env_valid       /* Checksum of Environment valid */   
         …   
    } gd_t;  


二 env的初始化

uboot中env的整个架构可以分为3层:

(1) 命令层,如saveenv,setenv editenv这些命令的实现,还有如启动时调用的env_relocate函数。

(2) 中间封装层,利用不同静态存储器特性封装出命令层需要使用的一些通用函数,如env_init,env_relocate_spec,saveenv这些函数。实现文件在common/env_xxx.c

(3) 驱动层,实现不同静态存储器的读写擦等操作,这些是uboot下不同子系统都必须的。

按照执行流顺序,首先分析一下uboot启动的env初始化过程。

首先在board_init_f中调用init_sequence的env_init,这个函数是不同存储器实现的函数,nand中的实现如下:

    /*
     * This is called before nand_init() so we can't read NAND to
     * validate env data.
     *
     * Mark it OK for now. env_relocate() in env_common.c will call our
     * relocate function which does the real validation.
     *
     * When using a NAND boot image (like sequoia_nand), the environment
     * can be embedded or attached to the U-Boot image in NAND flash.
     * This way the SPL loads not only the U-Boot image from NAND but
     * also the environment.
     */  
    int env_init(void)  
    {  
        gd->env_addr    = (ulong)&default_environment[0];  
        gd->env_valid   = 1;  
        return 0;  
    }


从注释就基本可以看出这个函数的作用,因为env_init要早于静态存储器的初始化,所以无法进行env的读写,这里将gd中的env相关变量进行配置,

默认设置env为valid。方便后面env_relocate函数进行真正的env从nand到ram的relocate。

继续执行,在board_init_r中,如下:

    /* initialize environment */  
        if (should_load_env())  
            env_relocate();  
        else  
            set_default_env(NULL);  


这是在所有存储器初始化完成后执行的。

首先调用should_load_env,如下:

    /*
     * Tell if it's OK to load the environment early in boot.
     *
     * If CONFIG_OF_CONFIG is defined, we'll check with the FDT to see
     * if this is OK (defaulting to saying it's not OK).
     *
     * NOTE: Loading the environment early can be a bad idea if security is
     *       important, since no verification is done on the environment.
     *
     * @return 0 if environment should not be loaded, !=0 if it is ok to load
     */  
    static int should_load_env(void)  
    {  
    #ifdef CONFIG_OF_CONTROL  
        return fdtdec_get_config_int(gd->fdt_blob, "load-environment", 1);  
    #elif defined CONFIG_DELAY_ENVIRONMENT  
        return 0;  
    #else  
        return 1;  
    #endif  
    }  


从注释可以看出,CONFIG_OF_CONTROL没有定义,鉴于考虑安全性问题,如果我们想要推迟env的load,可以定义CONFIG_DELAY_ENVIRONMENT,这里返回0,就调用set_default_env使用默认的env,默认env是在配置文件中CONFIG_EXTRA_ENV_SETTINGS设置的。

我们可以在之后的某个地方在调用env_relocate来load env。这里我们选择在这里直接load env。所以没有定义CONFIG_DELAY_ENVIRONMENT,返回1。调用env_relocate。

在common/env_common.c中:

    void env_relocate(void)  
    {  
    #if defined(CONFIG_NEEDS_MANUAL_RELOC)  
        env_reloc();  
        env_htab.change_ok += gd->reloc_off;  
    #endif  
        if (gd->env_valid == 0) {  
    #if defined(CONFIG_ENV_IS_NOWHERE) || defined(CONFIG_SPL_BUILD)  
            /* Environment not changable */  
            set_default_env(NULL);  
    #else  
            bootstage_error(BOOTSTAGE_ID_NET_CHECKSUM);  
            set_default_env("!bad CRC");  
    #endif  
        } else {  
            env_relocate_spec();  
        }  
    }   


Gd->env_valid在之前的env_init中设置为1,所以这里调用env_relocate_spec,

这个函数也是不同存储器的中间封装层提供的函数,对于nand在common/env_nand.c中,如下:

    void env_relocate_spec(void)  
    {  
       int ret;  
        ALLOC_CACHE_ALIGN_BUFFER(char, buf, CONFIG_ENV_SIZE);  
        ret = readenv(CONFIG_ENV_OFFSET, (u_char *)buf);  
        if (ret) {  
            set_default_env("!readenv() failed");  
            return;  
        }  
        env_import(buf, 1);  
    }  

首先定义一个长度为CONFIG_ENV_SIZE的buf,然后调用readenv,

CONFIG_ENV_OFFSET是在配置文件中定义的env在nand中偏移位置。我们这里定义的是在4M的位置。

Readenv也在env_nand.c中,如下:

    int readenv(size_t offset, u_char *buf)  
    {  
        size_t end = offset + CONFIG_ENV_RANGE;  
        size_t amount_loaded = 0;  
        size_t blocksize, len;  
        u_char *char_ptr;  
        blocksize = nand_info[0].erasesize;  
        if (!blocksize)  
            return 1;  
        len = min(blocksize, CONFIG_ENV_SIZE);  
        while (amount_loaded < CONFIG_ENV_SIZE && offset < end) {  
            if (nand_block_isbad(&nand_info[0], offset)) {  
                offset += blocksize;  
            } else {  
                char_ptr = &buf[amount_loaded];  
                if (nand_read_skip_bad(&nand_info[0], offset,  
                               &len, NULL,  
                               nand_info[0].size, char_ptr))  
                    return 1;  
                offset += blocksize;  
                amount_loaded += len;  
            }  
        }  
      
        if (amount_loaded != CONFIG_ENV_SIZE)  
            return 1;  
      
        return 0;  
    }  

Readenv函数利用nand_info[0]对nand进行读操作,读出指定位置,指定长度的数据到buf中。Nand_info[0]是一个全局变量,来表征第一个nand device,这里在nand_init时会初始化这个变量。Nand_init必须在env_relocate之前。

回到env_relocate_spec中,buf读回后调用env_import,如下:

    /*
     * Check if CRC is valid and (if yes) import the environment.
     * Note that "buf" may or may not be aligned.
     */  
    int env_import(const char *buf, int check)  
    {  
        env_t *ep = (env_t *)buf;  
      
        if (check) {  
            uint32_t crc;  
      
            memcpy(&crc, &ep->crc, sizeof(crc));  
      
            if (crc32(0, ep->data, ENV_SIZE) != crc) {  
                set_default_env("!bad CRC");  
                return 0;  
            }  
        }  
      
        if (himport_r(&env_htab, (char *)ep->data, ENV_SIZE, '\0', 0,  
                0, NULL)) {  
            gd->flags |= GD_FLG_ENV_READY;  
            return 1;  
        }  
      
        error("Cannot import environment: errno = %d\n", errno);  
      
        set_default_env("!import failed");  
      
        return 0;  
    }  


首先将buf强制转换为env_t类型,然后对data进行crc校验,跟buf中原有的crc对比,不一致则使用默认env。

最后调用himport_r,该函数将给出的data按照‘\0’分割填入env_htab的哈希表中。

之后对于env的操作,如printenv setenv editenv,都是对该哈希表的操作。

Env_relocate执行完成,env的初始化就完成了。

三 env的操作实现

Uboot对env的操作命令实现在common/cmd_nvedit.c中。

对于setenv printenv editenv这3个命令,看其实现代码,都是对relocate到RAM中的env_htab的操作,这里就不再详细分析了,重点来看一下savenv实现。

    static int do_env_save(cmd_tbl_t *cmdtp, int flag, int argc,  
                   char * const argv[])  
    {  
        printf("Saving Environment to %s...\n", env_name_spec);  
      
        return saveenv() ? 1 : 0;  
    }  
      
    U_BOOT_CMD(  
        saveenv, 1, 0,  do_env_save,  
        "save environment variables to persistent storage",  
        ""  
    );  


在do_env_save调用saveenv,这个函数是不同存储器实现的封装层函数。对于nand,在common/env_nand.c中,如下:

    int saveenv(void)  
    {  
        int ret = 0;  
        ALLOC_CACHE_ALIGN_BUFFER(env_t, env_new, 1);  
        ssize_t len;  
        char    *res;  
        int env_idx = 0;  
        static const struct env_location location[] = {  
            {  
                .name = "NAND",  
                .erase_opts = {  
                    .length = CONFIG_ENV_RANGE,  
                    .offset = CONFIG_ENV_OFFSET,  
                },  
            },  
    #ifdef CONFIG_ENV_OFFSET_REDUND  
            {  
                .name = "redundant NAND",  
                .erase_opts = {  
                    .length = CONFIG_ENV_RANGE,  
                    .offset = CONFIG_ENV_OFFSET_REDUND,  
                },  
            },  
    #endif  
        };  
      
        if (CONFIG_ENV_RANGE < CONFIG_ENV_SIZE)  
            return 1;  
      
        res = (char *)&env_new->data;  
        len = hexport_r(&env_htab, '\0', 0, &res, ENV_SIZE, 0, NULL);  
        if (len < 0) {  
            error("Cannot export environment: errno = %d\n", errno);  
            return 1;  
        }  
        env_new->crc   = crc32(0, env_new->data, ENV_SIZE);  
    #ifdef CONFIG_ENV_OFFSET_REDUND  
        env_new->flags = ++env_flags; /* increase the serial */  
        env_idx = (gd->env_valid == 1);  
    #endif  
      
        ret = erase_and_write_env(&location[env_idx], (u_char *)env_new);  
    #ifdef CONFIG_ENV_OFFSET_REDUND  
        if (!ret) {  
            /* preset other copy for next write */  
            gd->env_valid = gd->env_valid == 2 ? 1 : 2;  
            return ret;  
        }  
      
        env_idx = (env_idx + 1) & 1;  
        ret = erase_and_write_env(&location[env_idx], (u_char *)env_new);  
        if (!ret)  
            printf("Warning: primary env write failed,"  
                    " redundancy is lost!\n");  
    #endif  
      
        return ret;  
    }  


 

定义env_t类型的变量env_new,准备来存储env。

利用函数hexport_r对env_htab操作,读取env内容到env_new->data,

校验data,获取校验码env_new->crc。

最后调用erase_and_write_env将env_new先擦后写入由location定义的偏移量和长度的nand区域中。

这样就完成了env写入nand的操作。

 
————————————————
版权声明:本文为CSDN博主「问心雕龙」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wendellluntan/article/details/74373682

发布了6 篇原创文章 · 获赞 30 · 访问量 10万+

猜你喜欢

转载自blog.csdn.net/boyemachao/article/details/100562463