JDK5.0的11个主要新特征

1           泛型(Generic)
1.1          说明
增强了java的类型 安全,可以在编译期间对容器内的对象进行类型检查,在运行期不必进行类型的转换。而在j2se5之前必须在运行期动态进行容器内对象的检查及转换
减少含糊的容器,可以定义什么类型的数据放入容器


ArrayList<Integer> listOfIntegers; // <TYPE_NAME> is new to the syntax
Integer integerObject;
listOfIntegers = new ArrayList<Integer>(); // <TYPE_NAME> is new to the syntax
listOfIntegers.add(new Integer(10)); // 只能是Integer类型
integerObject = listOfIntegers.get(0); // 取出对象不需要转换 

1.2          用法

声明及实例化泛型类:

HashMap<String,Float> hm = new HashMap<String,Float>();
//不能使用原始类型
GenList<int> nList = new GenList<int>();  //编译错误 

J2SE 5.0目前不支持原始类型作为类型参数(type parameter)

定义泛型接口:

public interface GenInterface<T> {
    void func(T t);
定义泛型类:

public class ArrayList<ItemType> { ... }
public class GenMap<T, V> { ... }
例1:
public class MyList<Element> extends LinkedList<Element>
{
       public void swap(int i, int j)
       {
              Element temp = this.get(i);
              this.set(i, this.get(j));
              this.set(j, temp);
       }
      
       public static void main(String[] args)
       {
              MyList<String> list = new MyList<String>();
              list.add("hi");
              list.add("andy");
              System.out.println(list.get(0) + " " + list.get(1));
              list.swap(0,1);
              System.out.println(list.get(0) + " " + list.get(1));
       }
例2:

public class GenList <T>{
       private T[] elements;
       private int size = 0;
       private int length = 0;
 
       public GenList(int size) {
              elements = (T[])new Object[size];
              this.size = size;
       }
 
       public T get(int i) {
              if (i < length) {
                     return elements[i];
              }
              return null;
       }
      
       public void add(T e) {
              if (length < size - 1)
                     elements[length++] = e;
       }
泛型方法:

public class TestGenerics{
       public <T> String getString(T obj) { //实现了一个泛型方法
              return obj.toString();
       }
      
       public static void main(String [] args){
              TestGenerics t = new TestGenerics();
              String s = "Hello";
              Integer i = 100;
              System.out.println(t.getString(s));
              System.out.println(t.getString(i));
              }
1.3          受限泛型
  受限泛型是指类型参数的取值范围是受到限制的. extends关键字不仅仅可以用来声明类的继承关系, 也可以用来声明类型参数(type parameter)的受限关系.例如, 我们只需要一个存放数字的列表, 包括整数(Long, Integer, Short), 实数(Double, Float), 不能用来存放其他类型, 例如字符串(String), 也就是说, 要把类型参数T的取值泛型限制在Number极其子类中.在这种情况下, 我们就可以使用extends关键字把类型参数(type parameter)限制为数字
示例

public class Limited<T extends Number> {
       public static void main(String[] args) {
              Limited<Integer> number;   //正确
              Limited<String> str;       //编译错误
       }

1.4          泛型与异常

类型参数在catch块中不允许出现,但是能用在方法的throws之后。例:

import java.io.*;
interface Executor<E extends Exception> {
       void execute() throws E;
}
 
public class GenericExceptionTest {
       public static void main(String args[]) {
              try {
                     Executor<IOException> e = new Executor<IOException>() {
                            public void execute() throws IOException{
                                   // code here that may throw an
                                   // IOException or a subtype of
                                   // IOException
                            }
                            };
                     e.execute();
              } catch(IOException ioe) {
                     System.out.println("IOException: " + ioe);
                     ioe.printStackTrace();
              }
       }

1.5          泛型的通配符"?"

"?"可以用来代替任何类型, 例如使用通配符来实现print方法。
public static void print(GenList<?> list) {})
1.6          泛型的一些局限型
不能实例化泛型
T t = new T(); //error
不能实例化泛型类型的数组
T[] ts= new T[10];   //编译错误
不能实例化泛型参数数
Pair<String>[] table = new Pair<String>(10); // ERROR
类的静态变量不能声明为类型参数类型
public class GenClass<T> {
     private static T t;    //编译错误
}
泛型类不能继承自Throwable以及其子类
public GenExpection<T> extends Exception{}    //编译错误
不能用于基础类型int等
Pair<double> //error
Pair<Double> //right
2           增强循环(Enhanced for Loop)
旧的循环

LinkedList list = new LinkedList();             
list.add("Hi");
list.add("everyone!");
list.add("Was");
list.add("the");
list.add("pizza");
list.add("good?");          
for (int i = 0; i < list.size(); i++)
       System.out.println((String) list.get(i));
//或者用以下循环
//for(Iterator iter = list.iterator(); iter.hasNext(); ) {
//Integer stringObject = (String)iter.next();
// ... more statements to use stringObject...
//}
新的循环
LinkedList<String> list = new LinkedList<String>();         
list.add("Hi");
list.add("everyone!");
list.add("Was");
list.add("the");
list.add("pizza");
list.add("good?");          
for (String s : list)
       System.out.println(s); 

很清晰、方便,一看便知其用法

3           可变参数(Variable Arguments)
实现了更灵活的方法参数传入方式,System.out.printf是个很好的例子
用法:void test(Object … args)
一个很容易理解的例子


public static int add(int ... args){
       int total = 0;   
       for (int i = 0; i < args.length; i++)
              total += args[i];     
       return total;
}
public static void main(String[] args){
       int a;
       a = Varargs.add(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
       System.out.println(a);

4           自动实现装箱和解箱操作(Boxing/Unboxing Conversions)

说明:实现了基本类型与外覆类之间的隐式转换。基本类型至外覆类的转换称为装箱,外覆类至基本类型的转换为解箱。这些类包括
Primitive Type     Reference Type
boolean           Boolean
byte              Byte
char              Character
short             Short
int               Integer
long              Long
float              Float
double            Double
例如,旧的实现方式

Integer intObject;
int intPrimitive;
ArrayList arrayList = new ArrayList();
intPrimitive = 11;
intObject = new Integer(intPrimitive);
arrayList.put(intObject); // 不能放入int类型,只能使Integer 
新的实现方式

int intPrimitive;
ArrayList arrayList = new ArrayList();
intPrimitive = 11;
//在这里intPrimitive被自动的转换为Integer类型
arrayList.put(intPrimitive); 

5           静态导入(Static Imports)

很简单的东西,看一个例子:
没有静态导入
Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
有了静态导入
import static java.lang.Math.*;
sqrt(pow(x, 2) + pow(y, 2));
 
其中import static java.lang.Math.*;就是静态导入的语法,它的意思是导入Math类中的所有static方法和属性。这样我们在使用这些方法和属性时就不必写类名。
需要注意的是默认包无法用静态导入,另外如果导入的类中有重复的方法和属性则需要写出类名,否则编译时无法通过。
6          枚举类(Enumeration Classes)
用法:public enum Name {types, ….}
简单的例子:

public enum Colors {Red, Yellow, Blue, Orange, Green, Purple, Brown, Black}
public static void main(String[] args){
    Colors myColor = Colors.Red;
    System.out.println(myColor);
又一个简单例子:

import java.util.*;
enum OperatingSystems {windows, unix, linux, macintosh}
public class EnumExample1 {
    public static void main(String args[])  {
        OperatingSystems os;
        os = OperatingSystems.windows;
        switch(os) {
            case windows:
                System.out.println(“You chose Windows!”);
                break;
            case unix:
                System.out.println(“You chose Unix!”);
                break;
            case linux:
                System.out.println(“You chose Linux!”);
                break;
            case macintosh:
                System.out.println(“You chose Macintosh!”);
                break;
            default:
                System.out.println(“I don’t know your OS.”);
                break;
        }
    }
应运enum简写的例子:

import java.util.*;
 
public class EnumTest
{
   public static void main(String[] args)
   {
      Scanner in = new Scanner(System.in);
      System.out.print("Enter a size: (SMALL, MEDIUM, LARGE, EXTRA_LARGE) ");
      String input = in.next().toUpperCase();
      Size size = Enum.valueOf(Size.class, input);
      System.out.println("size=" + size);
      System.out.println("abbreviation=" + size.getAbbreviation());
      if (size == Size.EXTRA_LARGE)
         System.out.println("Good job--you paid attention to the _.");
   }
}
 
enum Size
{
   SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");
 
   private Size(String abbreviation) { this.abbreviation = abbreviation; }
   public String getAbbreviation() { return abbreviation; }
 
   private String abbreviation;
 
enum类中拥有方法的一个例子:

enum ProgramFlags {
    showErrors(0x01),
    includeFileOutput(0x02),
    useAlternateProcessor(0x04);
    private int bit;
    ProgramFlags(int bitNumber) {
        bit = bitNumber;
    }
    public int getBitNumber()   {
        return(bit);
    }
}
public class EnumBitmapExample {
    public static void main(String args[])  {
        ProgramFlags flag = ProgramFlags.showErrors;
        System.out.println(“Flag selected is: “ +
        flag.ordinal() +
        “ which is “ +
        flag.name());
    }
7          元数据(Meta data)
请参考
http://www-900.ibm.com/developerWorks/cn/java/j-annotate1/
http://www-900.ibm.com/developerworks/cn/java/j-annotate2.shtml
8          Building Strings(StringBuilder 类)
在JDK5.0中引入了StringBuilder类,该类的方法不是同步(synchronized)的,这使得它比StringBuffer更加轻量级和有效。
9          控制台输入(Console Input)
在JDK5.0之前我们只能通过JOptionPane.showInputDialog进行输入,但在5.0中我们可以通过类Scanner在控制台进行输入操作
    例如在1.4中的输入


 String input = JOptionPane.showInputDialog(prompt);
int n = Integer.parseInt(input);
double x = Double.parseDouble(input);
s = input; 
   
在5.0中我们可以

Scanner in = new Scanner(System.in);
System.out.print(prompt);
int n = in.nextInt();
double x = in.nextDouble();
String s = in.nextLine(); 

10      Covariant Return Types(不晓得怎么翻译,大概是 改变返回类型)

JDK5之前我们覆盖一个方法时我们无法改变被方法的返回类型,但在JDK5中我们可以改变它
例如1.4中我们只能

public Object clone() { ... }
...
Employee cloned = (Employee) e.clone(); 
但是在5.0中我们可以改变返回类型为Employee

public Employee clone() { ... }
...
Employee cloned = e.clone(); 

11      格式化I/O(Formatted I/O)

增加了类似C的格式化输入输出,简单的例子:

public class TestFormat{
    public static void main(String[] args){
        int a = 150000, b = 10;
        float c = 5.0101f, d = 3.14f;
       
        System.out.printf("%4d %4d%n", a, b);
        System.out.printf("%x %x%n", a, b);
        System.out.printf("%3.2f %1.1f%n", c, d);
        System.out.printf("%1.3e %1.3e%n", c, d*100);
    }

输出结果为:

150000   10
249f0 a
5.01 3.1
5.010e+00 3.140e+02
下面是一些格式化参数说明(摘自Core Java 2 Volume I - Fundamentals, Seventh Edition)
 
Table 3-5. Conversions for printf

Conversion Character
Type
Example
d
Decimal integer
159
x
Hexadecimal integer
9f
o
Octal integer
237
f
Fixed-point floating-point
15.9
e
Exponential floating-point
1.59E+01
g
General floating-point (the shorter of e and f)
 
a
Hexadecimal floating point
0x1.fccdp3
s
String
Hello
c
Character
H
b
Boolean
TRUE
h
Hash code
42628b2
tx
Date and time
See Table 3-7
%
The percent symbol
%
n
The platform-dependent line separator
 
 
Table 3-7. Date and Time Conversion Characters

Conversion Character
Type
Example
C
Complete date and time
Mon Feb 09 18:05:19 PST 2004
F
ISO 8601 date
2004-02-09
D
U.S. formatted date (month/day/year)
02/09/2004
T
24-hour time
18:05:19
r
12-hour time
06:05:19 pm
R
24-hour time, no seconds
18:05
Y
Four-digit year (with leading zeroes)
2004
y
Last two digits of the year (with leading zeroes)
04
C
First two digits of the year (with leading zeroes)
20
B
Full month name
February
b or h
Abbreviated month name
Feb
m
Two-digit month (with leading zeroes)
02
d
Two-digit day (with leading zeroes)
09
e
Two-digit day (without leading zeroes)
9
A
Full weekday name
Monday
a
Abbreviated weekday name
Mon
j
Three-digit day of year (with leading zeroes), between 001 and 366
069
H
Two-digit hour (with leading zeroes), between 00 and 23
18
k
Two-digit hour (without leading zeroes), between 0 and 23
18
I
Two-digit hour (with leading zeroes), between 01 and 12
06
l
Two-digit hour (without leading zeroes), between 1 and 12
6
M
Two-digit minutes (with leading zeroes)
05
S
Two-digit seconds (with leading zeroes)
19
L
Three-digit milliseconds (with leading zeroes)
047
N
Nine-digit nanoseconds (with leading zeroes)
047000000
P
Uppercase morning or afternoon marker
PM
p
Lowercase morning or afternoon marker
pm
z
RFC 822 numeric offset from GMT
-0800
Z
Time zone
PST
s
Seconds since 1970-01-01 00:00:00 GMT
1078884319
E
Milliseconds since 1970-01-01 00:00:00 GMT
1078884319047
 
Table 3-6. Flags for printf

Flag
Purpose
Example
+
Prints sign for positive and negative numbers
+3333.33
space
Adds a space before positive numbers
| 3333.33|
0
Adds leading zeroes
003333.33
-
Left-justifies field
|3333.33 |
(
Encloses negative number in parentheses
(3333.33)
,
Adds group separators
3,333.33
# (for f format)
Always includes a decimal point
3,333.
# (for x or o format)
Adds 0x or 0 prefix
0xcafe
^
Converts to upper case
0XCAFE
$
Specifies the index of the argument to be formatted; for example, %1$d %1$x prints the first argument in decimal and hexadecimal
159 9F
Formats the same value as the previous specification; for example, %d %<x prints the same number in decimal and hexadecimal
 
这里是一些简单的介绍,更详细的说明请参考:
Core Java 2 Volume I - Fundamentals, Seventh Edition
Core Java 2 Volume II - Advanced Features, Seventh Edition

里面都有一些很精彩的描述,中文名称就是《Java核心技术》。只有第七版才有J2SE5.0的介绍,但是第七版好像还没有中文版。本文还参考了Professional Java JDK - 5th Edition.

发布了24 篇原创文章 · 获赞 4 · 访问量 10万+

猜你喜欢

转载自blog.csdn.net/wangxiaomei2008/article/details/2543104