C++中的list

C++中的list

一、list简介

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向
    其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高
    效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率
    更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list
    的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间
    开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这
    可能是一个重要的因素)

二、list的底层结构示意图
在这里插入图片描述
注意begin、end、rbegin、rend的位置
注意反向迭代器的打印方式

三、list的迭代器失效问题
前面说过,此处大家可将迭代器暂时理解成类似于指针,**迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,**并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

void TestListIterator1()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
list<int> l(array, array+sizeof(array)/sizeof(array[0]));
auto it = l.begin();
while (it != l.end())
{
// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋
值
l.erase(it);
++it;
}
}

//改正
void TestListIterator1()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
list<int> l(array, array+sizeof(array)/sizeof(array[0]));
auto it = l.begin();
while (it != l.end())
{
// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋
值
it = l.erase(it);
}
}

四、list模拟实现

namespace wolf
{
// List的节点类
template<class T>
struct ListNode
{
ListNode(const T& val = T())
: _pPre(nullptr)
, _pNext(nullptr)
, _val(val)
{}
ListNode<T>* _pPre;
ListNode<T>* _pNext;
T _val;
};
/*
List 的迭代器
迭代器有两种实现方式,具体应根据容器底层数据结构实现:
1. 原生态指针,比如:vector
2. 将原生态指针进行封装,因迭代器使用形式与指针完全相同,因此在自定义的类中必须实现以下方法:
1. 指针可以解引用,迭代器的类中必须重载operator*()
2. 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()
3. 指针可以++向后移动,迭代器类中必须重载operator++()与operator++(int)
至于operator--()/operator--(int)释放需要重载,根据具体的结构来抉择,双向链表可以向前
移动,所以需要重载,如果是forward_list就不需要重载--
4. 迭代器需要进行是否相等的比较,因此还需要重载operator==()与operator!=()
*/
template<class T, class Ref, class Ptr>
class ListIterator
{
	typedef ListNode<T>* PNode;
typedef ListIterator<T, Ref, Ptr> Self;
public:
ListIterator(PNode pNode = nullptr)
: _pNode(pNode)
{}
ListIterator(const Self& l)
: _pNode(l._pNode)
{}
T& operator*(){return _pNode->_val;}
T* operator->(){return &(operator*());}
Self& operator++()
{
_pNode = _pNode->_pNext;
return *this;
}
Self operator++(int)
{
Self temp(*this);
_pNode = _pNode->_pNext;
return temp;
}
Self& operator--();
Self& operator--(int);
bool operator!=(const Self& l){return _pNode != l._pNode;}
bool operator==(const Self& l){return _pNode != l._pNode;}
PNode _pNode;
};
template<class T>
class list
{
typedef ListNode<T> Node;
typedef Node* PNode;
public:
typedef ListIterator<T, T&, T*> iterator;
typedef ListIterator<T, const T&, const T&> const_iterator;
public:
///////////////////////////////////////////////////////////////
// List的构造
list()
{
CreateHead();
}
list(int n, const T& value = T())
{
CreateHead();
for (int i = 0; i < n; ++i)
push_back(value);
}
template <class Iterator>
list(Iterator first, Iterator last)
{
CreateHead();
while (first != last)
{
push_back(*first);
++first;
}
}
list(const list<T>& l)
{
CreateHead();
// 用l中的元素构造临时的temp,然后与当前对象交换
list<T> temp(l.cbegin(), l.cend());
this->swap(temp);
}
list<T>& operator=(const list<T> l)
{
this->swap(l);
return *this;
}
~list()
{
clear();
delete _pHead;
_pHead = nullptr;
}
///////////////////////////////////////////////////////////////
// List Iterator
iterator begin(){return iterator(_pHead->_pNext);}
iterator end(){return iterator(_pHead);}
const_iterator begin(){return const_iterator(_pHead->_pNext);}
const_iterator end(){return const_iterator(_pHead);}
///////////////////////////////////////////////////////////////
// List Capacity
size_t size()const;
bool empty()const;
////////////////////////////////////////////////////////////
// List Access
T& front();
const T& front()const;
T& back();
const T& back()const;
////////////////////////////////////////////////////////////
// List Modify
void push_back(const T& val){insert(begin(), val);}
void pop_back(){erase(--end());}
void push_front(const T& val){insert(begin(), val);}
void pop_front(){erase(begin());}
// 在pos位置前插入值为val的节点
iterator insert(iterator pos, const T& val)
{
PNode pNewNode = new Node(val);
PNode pCur = pos._pNode;
// 先将新节点插入
pNewNode->_pPre = pCur->_pPre;
pNewNode->_pNext = pCur;
pNewNode->_pPre->_pNext = pNewNode;
pCur->_pPre = pNewNode;
return iterator(pNewNode);
}
// 删除pos位置的节点,返回该节点的下一个位置
iterator erase(iterator pos)
{
// 找到待删除的节点
PNode pDel = pos._pNode;
PNode pRet = pDel->_pNext;
// 将该节点从链表中拆下来并删除
pDel->_pPre->_pNext = pDel->_pNext;
pDel->_pNext->_pPre = pDel->_pPre;
delete pDel;
return iterator(pRet);
}
void clear();
void swap(List<T>& l);
private:
void CreateHead()
{
_pHead = new Node;
_pHead->_pPre = _pHead;
_pHead->_pNext = _pHead;
}
private:
PNode _pHead;
};
}

五、vector和list的比较

vector list
底 层 结 构 动态顺序表,一段连续空间 带头结点的双向循环链表
随 机 访 问 支持随机访问,访问某个元素效率O(1) 不支持随机访问,访问某个元素效率O(N)
插 入 和 删 除 任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低 任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1)
空 间 利 用 率 底层为连续空间,不容易造成内存碎片,空间利用率高, 缓存利用率高底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低
迭 代 器 原生态指针 对原生态指针(节点指针)进行封装
迭 代 器 失 效 在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效 插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使 用 场 景 需要高效存储,支持随机访问,不关心插入删除效率 大量插入和删除操作,不关心随

机访问

发布了66 篇原创文章 · 获赞 28 · 访问量 6万+

猜你喜欢

转载自blog.csdn.net/wolfGuiDao/article/details/104250685