二十三、并发编程

一、进程

进程 —— 资源分配的最小单位

线程 —— CPU调度的最小单位

以上两个概念还请铭记。

进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。在早期面向进程设计的计算机结构中,进程是程序的基本执行实体;在当代面向线程设计的计算机结构中,进程是线程的容器。程序是指令、数据及其组织形式的描述,进程是程序的实体。

狭义定义:进程是正在运行的程序的实例(an instance of a computer program that is being executed)。
广义定义:进程是一个具有一定独立功能的程序关于某个数据集合的一次运行活动。它是 操作系统动态执行的 基本单元,在传统的 操作系统中,进程既是基本的 分配单元,也是基本的执行单元。
分配单元:分配单元是计算机最小的存储单位,比如你的计算机设置的存储单元为512bytes,你存储一个文件若是小于512bytes也会占用512bytes的空间,反正就是存储的最小的单位,这时候你想是不是分配单元越小越好,这样就可以节省空间了。但是现实却是不是,因为越小的存储单元,你去读取文件的时间也就越长。所以一般这个设置分配单元我们就用计算机给我们的默认值就好了。
 
二、提到进程,操作系统那些不得不提的事情
分时系统:
分时技术:把处理机的运行时间分成很短的时间片,按时间片轮流把处理机分配给各联机作业使用。
  若某个作业在分配给它的时间片内不能完成其计算,则该作业暂时中断,把处理机让给另一作业使用,等待下一轮时再继续其运行。由于计算机速度很快,作业运行轮转得很快,给每个用户的印象是,好象他独占了一台计算机。而每个用户可以通过自己的终端向系统发出各种操作控制命令,在充分的人机交互情况下,完成作业的运行。
具有上述特征的计算机系统称为分时系统,它允许多个用户同时联机使用计算机。
  特点:
  (1)多路性。若干个用户同时使用一台计算机。微观上看是各用户轮流使用计算机;宏观上看是各用户并行工作。
  (2)交互性。用户可根据系统对请求的响应结果,进一步向系统提出新的请求。这种能使用户与系统进行人机对话的工作方式,明显地有别于批处理系统,因而,分时系统又被称为交互式系统。
  (3)独立性。用户之间可以相互独立操作,互不干扰。系统保证各用户程序运行的完整性,不会发生相互混淆或破坏现象。
  (4)及时性。系统可对用户的输入及时作出响应。分时系统性能的主要指标之一是响应时间,它是指:从终端发出命令到系统予以应答所需的时间。
   分时系统的主要目标:对用户响应的及时性,即不至于用户等待每一个命令的处理时间过长。
分时系统可以同时接纳数十个甚至上百个用户,由于内存空间有限,往往采用对换(又称交换)方式的存储方法。即将未“轮到”的作业放入磁盘,一旦“轮到”,再将其调入内存;而时间片用完后,又将作业存回磁盘(俗称“滚进”、“滚出“法),使同一存储区域轮流为多个用户服务。
多用户分时系统是当今计算机操作系统中最普遍使用的一类操作系统。
       注意:分时系统的分时间片工作,在没有遇到IO操作的时候就用完了自己的时间片被切走了,这样的切换工作其实并没有提高cpu的效率,反而使得计算机的效率降低了。但是我们牺牲了一点效率,却实现了多个程序共同执行的效果,这样你就可以在计算机上一边听音乐一边聊qq了。
实时系统:这种系统的应用场景一般是那些需要立刻做出反应,不能像时间片那样有等待的时间。即系统能够及时响应随机发生的外部事件,并在严格的时间范围内完成对该事件的处理。
实时系统在一个特定的应用中常作为一种控制设备来使用。
    实时系统可分成两类:
    (1)实时控制系统。当用于飞机飞行、导弹发射等的自动控制时,要求计算机能尽快处理测量系统测得的数据,及时地对飞机或导弹进行控制,或将有关信息通过显示终端提供给决策人员。当用于轧钢、石化等工业生产过程控制时,也要求计算机能及时处理由各类传感器送来的数据,然后控制相应的执行机构。
    (2)实时信息处理系统。当用于预定飞机票、查询有关航班、航线、票价等事宜时,或当用于银行系统、情报检索系统时,都要求计算机能对终端设备发来的服务请求及时予以正确的回答。此类对响应及时性的要求稍弱于第一类。
   实时操作系统的主要特点
  (1)及时响应。每一个信息接收、分析处理和发送的过程必须在严格的时间限制内完成。
  (2)高可靠性。需采取冗余措施,双机系统前后台工作,也包括必要的保密措施等。
通用操作系统:具有多种类型操作特征的操作系统。可以同时兼有多道批处理、分时、实时处理的功能,或其中两种以上的功能。
三、进程的调度

进程的调度遵循几个原则:
1、 先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。由此可知, 本算法适合于CPU繁忙        型作业, 而不利于I/O繁忙型的作业(进程)。
2、 短作业(进程)优先调度算法(SJ/PF)是指对短作业或短进程优先调度的算法,该算法既可用于作业调度,也可用于进程调度。但其对长作业不利;不能保证紧迫性作业(进程)被及时处理;
作业的长短只是被估算出来的。
3、
时间片轮转(Round Robin,RR)法的基本思路是让每个进程在就绪队列中的等待时间与享受服务的时间成比例。在时间片轮转法中,需要将CPU的处理时间分成固定大小的时间片,例如,几十毫秒至几百毫秒。
如果一个进程在被调度选中之后用完了系统规定的时间片,但又未完成要求的任务,则它自行释放自己所占有的CPU而排到就绪队列的末尾,等待下一次调度。同时,进程调度程序又去调度当前就绪队列中的第一个
进程。这种方法很明显对那些需要长时间的占用cpu的程序很不友好。因为每次时间片运行完毕之后又需要重新排队,而不是直接可以再次运行。

图上可以看出每个进程当他的时间片运行完或者遇到I/O之后重新排队的流程。
这种问题后来又有了一种更先进也是现再很主流的一种进程调度方式:
多级反馈队列调度算法则不必事先知道各种进程所需的执行时间,而且还可以满足各种类型进程的需要,因而它是目前被公认的一种较好的进程调度算法。在采用多级反馈队列调度算法的系统中,调度算法的实施过程如下所述。
(1) 应设置多个就绪队列,并为各个队列赋予不同的优先级。第一个队列的优先级最高,第二个队列次之,其余各队列的优先权逐个降低。该算法赋予各个队列中进程执行时间片的大小也各不相同,在优先权愈高的队列中,为每个进程所规定的执行时间片就愈小。例如,第二个队列的时间片要比第一个队列的时间片长一倍,……,第i+1个队列的时间片要比第i个队列的时间片长一倍。
(2) 当一个新进程进入内存后,首先将它放入第一队列的末尾,按FCFS原则排队等待调度。当轮到该进程执行时,如它能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚未完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行;如果它在第二队列中运行一个时间片后仍未完成,再依次将它放入第三队列,……,如此下去,当一个长作业(进程)从第一队列依次降到第n队列后,在第n 队列便采取按时间片轮转的方式运行。

(3) 仅当第一队列空闲时,调度程序才调度第二队列中的进程运行;仅当第1~(i-1)队列均空时,才会调度第i队列中的进程运行。如果处理机正在第i队列中为某进程服务时,又有新进程进入优先权较高的队列(第1~(i-1)中的任何一个队列),则此时新进程将抢占正在运行进程的处理机,即由调度程序把正在运行的进程放回到第i队列的末尾,把处理机分配给新到的高优先权进程。
复制代码
四、进程的创建‘
1.用Pocess模块创建新进程
import time
from multiprocessing import Process

def f(name):
    print('hello', name)
    print('我是子进程')

if __name__ == '__main__':  写这句话的目的是为了防止子进程创建的过程中,子进程递归调用父进程的代码,导致递归创建子进程,这种只存在windows用户中,在linus和max系统上不会出现这种问题。因为在这两种系统中创建子进程,是copy的代码,而不像在weindow是上那样import的主进程的代码
    p = Process(target=f, args=('bob',))
    p.start()
    time.sleep(1)
    print('执行主进程的内容了')

 
 
 
 
模块中的一些其他用法
1 p.start():启动进程,并调用该子进程中的p.run() 
2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法  
3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
4 p.is_alive():如果p仍然运行,返回True
5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程 
6 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
7 p.name:进程的名称
8 p.pid:进程的pid
9 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
10 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)

 2、查看父进程和子进程的进程号,并创建多个子进程

import os
from multiprocessing import Process

def f(x):
    print('子进程id :',os.getpid(),'父进程id :',os.getppid())
    return x*x

if __name__ == '__main__':
    print('主进程id :', os.getpid())
    p_lst = []
    for i in range(5):
        p = Process(target=f, args=(i,))
        p.start()
创建多个子进程的方法:用for循环创建
3.join的用法
from multiprocessing import Process

def f(name):
    print('hello', name)
    time.sleep(1)

if __name__ == '__main__':
    p_lst = []
    for i in range(5):
        p = Process(target=f, args=('bob'# [p.join() for p in p_lst]
    print('父进程在执行')
 
  
 
4.除了上面这些开启进程的方法,还有一种以继承Process类的形式开启进程的方式
import os
from multiprocessing import Process


class MyProcess(Process):
    def __init__(self,name):
        super().__init__()
        self.name=name
    def run(self):
        print(os.getpid())
        print('%s 正在和女主播聊天' %self.name)

p1=MyProcess('wupeiqi')
p2=MyProcess('yuanhao')
p3=MyProcess('nezha')

p1.start() #start会自动调用run
p2.start()
# p2.run()
p3.start()


p1.join()
p2.join()
p3.join()

print('主线程')
 
  
 
进程和进程之间数据是互相隔离的,数据不通的
from multiprocessing import Process

def work():
    global n
    n=0
    print('子进程内: ',n)


if __name__ == '__main__':
    n = 100
    p=Process(target=work)
    p.start()
    print('主进程内: ',n)
###
'子进程':0
'父进程':100
 
  
 
5、守护进程

会随着主进程的结束而结束。

注意:一定是随着主进程的代码结束而结束(主进程的结束和主进程的代码结束还是有区别的)

 
 

主进程创建守护进程

 
 

  其一:守护进程会在主进程代码执行结束后就终止

 
 

  其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

 
 

注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止  同时由于守护进程的这种机制,所以一般用守护进程来测试主进程的代码是否结束。

 
 
from multiprocessing import Process

def foo():
    print(123)
    time.sleep(1)
    print("end123")

def bar():
    print(456)
    time.sleep(3)
    print("end456")


p1=Process(target=foo)
p2=Process(target=bar)

p1.daemon=True         #一定要在start之前设置
p1.start()
p2.start()
time.sleep(0.1)
print("main-------")#打印该行则主进程代码结束,则守护进程p1应该被终止.#可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止.
6、Lock 锁

 在多个进程需要用时对一个数据或者一个文件进行操作的时候,这时候如果我们不加以控制,就会发生混乱得到我们意想不到的结果。

l = Lock()

l.acquire()

l.release()

#文件db的内容为:{"count":5}
#注意一定要用双引号,不然json无法识别
#并发运行,效率高,但竞争写同一文件,数据写入错乱
from multiprocessing import Process,Lock
import time,json,random
def search():
    dic=json.load(open('db'))
    print('\033[43m剩余票数%s\033[0m' %dic['count'])

def get():
    dic=json.load(open('db'))
    time.sleep(random.random()) #模拟读数据的网络延迟
    if dic['count'] >0:
        dic['count']-=1
        time.sleep(random.random()) #模拟写数据的网络延迟
        json.dump(dic,open('db','w'))
        print('\033[32m购票成功\033[0m')
    else:
        print('\033[31m购票失败\033[0m')

def task(lock):
    search()
    lock.acquire()
    get()
    lock.release()

if __name__ == '__main__':
    lock = Lock()
    for i in range(100): #模拟并发100个客户端抢票
        p=Process(target=task,args=(lock,))
        p.start()
#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低(共享数据基于文件,而文件是硬盘上的数据)
2.需要自己加锁处理

#因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
队列和管道都是将数据存放于内存中
队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
7、信号量
互斥锁同时只允许一个线程更改数据,而信号量Semaphore是同时允许一定数量的线程更改数据 
from multiprocessing import Process,Semaphore
import time,random

def go_ktv(sem,user):
    sem.acquire()
    print('%s 占到一间ktv小屋' %user)
    time.sleep(random.randint(0,3)) #模拟每个人在ktv中待的时间不同
    sem.release()

if __name__ == '__main__':
    sem=Semaphore(4)            #设置信号量为4  也是就是说开始的时候一次性开始了四个进程,后面每运行完一个进程则在开始一个,但是每次只能有4个进程在被执行
    p_l=[]
    for i in range(13):
        p=Process(target=go_ktv,args=(sem,'user%s' %i,))
        p.start()
        p_l.append(p)

    for i in p_l:
        i.join()
    print('============》')

 8、事件  Event

python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。

    事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。

 clear:将“Flag”设置为False
 set:将“Flag”设置为True

下面为红绿灯例子
from multiprocessing import Process, Event
import time, random


def car(e, n):
    while True:
        if not e.is_set():  # 进程刚开启,is_set()的值是Flase,模拟信号灯为红色
            print('\033[31m红灯亮\033[0m,car%s等着' % n)
            e.wait()    # 阻塞,等待is_set()的值变成True,模拟信号灯为绿色
            print('\033[32m车%s 看见绿灯亮了\033[0m' % n)
            time.sleep(random.randint(3, 6))
            if not e.is_set():   #如果is_set()的值是Flase,也就是红灯,仍然回到while语句开始
                continue
            print('车开远了,car', n)
            break


def police_car(e, n):
    while True:
        if not e.is_set():# 进程刚开启,is_set()的值是Flase,模拟信号灯为红色
            print('\033[31m红灯亮\033[0m,car%s等着' % n)
            e.wait(0.1) # 阻塞,等待设置等待时间,等待0.1s之后没有等到绿灯就闯红灯走了
            if not e.is_set():
                print('\033[33m红灯,警车先走\033[0m,car %s' % n)
            else:
                print('\033[33;46m绿灯,警车走\033[0m,car %s' % n)
        break



def traffic_lights(e, inverval):
    while True:
        time.sleep(inverval)
        if e.is_set():
            print('######', e.is_set())
            e.clear()  # ---->将is_set()的值设置为False
        else:
            e.set()    # ---->将is_set()的值设置为True
            print('***********',e.is_set())


if __name__ == '__main__':
    e = Event()     #事件在被设立之初默认为False
    for i in range(10):
        p=Process(target=car,args=(e,i,))  # 创建是个进程控制10辆车
        p.start()

    for i in range(5):
        p = Process(target=police_car, args=(e, i,))  # 创建5个进程控制5辆警车
        p.start()
    t = Process(target=traffic_lights, args=(e, 10))  # 创建一个进程控制红绿灯
    t.start()

    print('============》')
进程间的通信———管道和队列
进程内部通信 (IPC)inner-process communication
1.队列
Queue([maxsize]) 
创建共享的进程队列。maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还需要运行支持线程以便队列中的数据传输到底层管道中。 
Queue的实例q具有以下方法:

q.get( [ block [ ,timeout ] ] ) 
返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。

q.get_nowait( ) 
同q.get(False)方法。

q.put(item [, block [,timeout ] ] ) 
将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。

q.qsize() 
返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。


q.empty() 
如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。

q.full() 
如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)
 
  
 
对上述方法的应用
'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
'''

from multiprocessing import Queue
q=Queue(3)

#put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
# q.put(3)   # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
           # 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
    q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
    print('队列已经满了')

# 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
print(q.full()) #满了

print(q.get())
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
    q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
    print('队列已经空了')

print(q.empty()) #空了
 
  
 
生产者消费之模型
这是个很重要的模型,因为在多并发中能够通过这个模型来平衡生产线程和消耗线程的的工作能力,来提高计算数据的能力。
什么是生产者消费者模式

产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

这段代码解决了生产消费者在吧生产者生产的东西消费完了之后一直在那里阻塞的问题

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(name,q):
    for i in range(2):
        time.sleep(random.randint(1,3))
        res='%s%s' %(name,i)
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=('包子',q))
    p2=Process(target=producer,args=('骨头',q))
    p3=Process(target=producer,args=('泔水',q))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))
    c2=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    p2.start()
    p3.start()
    c1.start()

    p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号
    p2.join()
    p3.join()
    q.put(None) #有几个消费者就应该发送几次结束信号None
    q.put(None) #发送结束信号
    print('')
2、管道  Pipe
#创建管道的类:
Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道
#参数介绍:
dumplex:默认管道是全双工的,如果将duplex射成False,conn1只能用于接收,conn2只能用于发送全双工就是既可以发送也能够接受
#主要方法:
    conn1.recv():接收conn2.send(obj)发送的对象。如果没有消息可接收,recv方法会一直阻塞。如果连接的另外一端已经关闭,那么recv方法会抛出EOFError。
    conn1.send(obj):通过连接发送对象。obj是与序列化兼容的任意对象
 #其他方法:
conn1.close():关闭连接。如果conn1被垃圾回收,将自动调用此方法
conn1.fileno():返回连接使用的整数文件描述符
conn1.poll([timeout]):如果连接上的数据可用,返回True。timeout指定等待的最长时限。如果省略此参数,方法将立即返回结果。如果将timeout射成None,操作将无限期地等待数据到达。
 
conn1.recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。如果进入的消息,超过了这个最大值,将引发IOError异常,并且在连接上无法进行进一步读取。如果连接的另外一端已经关闭,再也不存在任何数据,将引发EOFError异常。
conn.send_bytes(buffer [, offset [, size]]):通过连接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,然后调用c.recv_bytes()函数进行接收    
 
conn1.recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或类似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。如果消息长度大于可用的缓冲区空间,将引发BufferTooShort异常。
 
  
 
应该特别注意管道端点的正确管理问题。如果是生产者或消费者中都没有使用管道的某个端点,就应将它关闭。这也说明了为何在生产者中关闭了管道的输出端,
在消费者中关闭管道的输入端
。如果忘记执行这些步骤,程序可能在消费者中的recv()操作上挂起。管道是由操作系统进行引用计数的,必须在所有进程中关闭管道后才能生成EOFError异常。因此,在生产者中关闭管道不会有任何效果,除非消费者也关闭了相同的管道端点。 
from multiprocessing import Process, Pipe

def f(parent_conn,child_conn):
    #parent_conn.close() #不写close将不会引发EOFError
    while True:
        try:
            print(child_conn.recv())
        except EOFError:
            child_conn.close()

if __name__ == '__main__':
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(parent_conn,child_conn,))
    p.start()
    child_conn.close()
    parent_conn.send('hello')
    parent_conn.close()
    p.join()
 
 

 进程之间的数据共享

但进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。

以后我们会尝试使用数据库来解决现在进程之间的数据共享问题。

Manage   

from multiprocessing import Process,Lock
from multiprocessing import Manager
def func(dic,lock):
    with lock:  #这里可以用with是因为Lock遵循上下文管理协议  后面会详细说这个with用法
        dic['count'] -= 1
if __name__ == '__main__':
    dic = {'count':100}
    lock = Lock()
    m = Manager()
    di =m.dict({'count':100})      #Manage 中不仅仅可以设置字典,还有列表,集合,元祖等,这些容器类的数据类型都可以
    l = []
    for i in range(100):
        p = Process(target=func, args=(di, lock))
        l.append(p)
        p.start()
        # l.append(p)
        # p.start()
    for k in l :
        k.join()
        print(di)
    print(di)

进程池 Pool
# 进程池
# 存放进程的容器
# 在进程创建之初,创建固定个数的进程
# 会被多个任务循环利用
# 节省了进程创建和销毁的时间开销
# 降低了操作系统调度进程的压力
# 信号量和进程池的区别
# 信号量 n个任务开启n个进程,
# 但同一时间只能有固定个数的进程在执行
# 进程在等待被执行
# 进程池 n个任务开启固定个数的进程
# 因此同一时间只能有固定个数的进程在执行
# 任务在等待被执行
 
 
*********异步执行::::
import
os import time import random from multiprocessing import Pool def work(n): print('%s run' %os.getpid()) time.sleep(random.random()) return n**2 if __name__ == '__main__': p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务 res_l=[] for i in range(10): res=p.apply_async(work,args=(i,)) # 异步运行,根据进程池中有的进程数,每次最多3个子进程在异步执行 # 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务 # 需要注意的是,进程池中的三个进程不会同时开启或者同时结束 # 而是执行完一个就释放一个进程,这个进程就去接收新的任务。 res_l.append(res) # 异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果 # 否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了 p.close() p.join() for res in res_l: print(res.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get
 
  
 
 
 
####同步执行####
import os,time
from multiprocessing import Pool

def work(n):
    print('%s run' %os.getpid())
    time.sleep(3)
    return n**2

if __name__ == '__main__':
    p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_l=[]
    for i in range(10):
        res=p.apply(work,args=(i,)) # 同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程中可能有阻塞也可能没有阻塞
                                    # 但不管该任务是否存在阻塞,同步调用都会在原地等着
    print(res_l)
 
  
 
线程
注意:进程是资源分配的最小单位,线程是CPU调度的最小单位.
 
 
    每一个进程中至少有一个线程。 
线程与进程的区别可以归纳为以下4点:
  1)地址空间和其它资源(如打开文件):进程间相互独立,同一进程的各线程间共享。某进程内的线程在其它进程不可见。
  2)通信: 进程间通信 IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要 进程同步和互斥手段的辅助,以保证数据的一致性。
  3)调度和切换:线程上下文切换比进程上下文切换要快得多。
  4)在多线程操作系统中,进程不是一个可执行的实体

线程的特点

  在多线程的操作系统中,通常是在一个进程中包括多个线程,每个线程都是作为利用CPU的基本单位,是花费最小开销的实体。线程具有以下属性。
  1)轻型实体
  线程中的实体基本上不拥有系统资源,只是有一点必不可少的、能保证独立运行的资源。
  线程的实体包括程序、数据和TCB。线程是动态概念,它的动态特性由线程控制块TCB(Thread Control Block)描述。
复制代码
TCB包括以下信息:
(1)线程状态。
(2)当线程不运行时,被保存的现场资源。
(3)一组执行堆栈。
(4)存放每个线程的局部变量主存区。
(5)访问同一个进程中的主存和其它资源。
用于指示被执行指令序列的程序计数器、保留局部变量、少数状态参数和返回地址等的一组寄存器和堆栈。
复制代码
  2)独立调度和分派的基本单位。
  在多线程OS中,线程是能独立运行的基本单位,因而也是独立调度和分派的基本单位。由于线程很“轻”,故线程的切换非常迅速且开销小(在同一进程中的)。
  3)共享进程资源。
  线程在同一进程中的各个线程,都可以共享该进程所拥有的资源,这首先表现在:所有线程都具有相同的进程id,这意味着,线程可以访问该进程的每一个内存资源;此外,还可以访问进程所拥有的已打开文件、定时器、信号量机构等。由于同一个进程内的线程共享内存和文件,所以线程之间互相通信不必调用内核。
  4 )可并发执行。
  在一个进程中的多个线程之间,可以并发执行,甚至允许在一个进程中所有线程都能并发执行;同样,不同进程中的线程也能并发执行,充分利用和发挥了处理机与外围设备并行工作的能力。
 
 

 多个线程共享同一个进程的地址空间中的资源,是对一台计算机上多个进程的模拟,有时也称线程为轻量级的进程。而对一台计算机上多个进程,则共享物理内存、磁盘、打印机等其他物理资源。

   多线程的运行也多进程的运行类似,是cpu在多个线程之间的快速切换。

 
 

线程和python全局解释器锁GIL

 
 

  Python代码的执行由Python虚拟机(也叫解释器主循环)来控制。Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行。虽然 Python 解释器中可以“运行”多个线程,但在任意时刻只有一个线程在解释器中运行。
  对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。

 
 

  在多线程环境中,Python 虚拟机按以下方式执行:

 
 

  a、设置 GIL;

 
 

  b、切换到一个线程去运行;

 
 

  c、运行指定数量的字节码指令或者线程主动让出控制(可以调用 time.sleep(0));

 
 

  d、把线程设置为睡眠状态;

 
 

  e、解锁 GIL;

 
 

  d、再次重复以上所有步骤。
  在调用外部代码(如 C/C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于在这期间没有Python的字节码被运行,所以不会做线程切换)编写扩展的程序员可以主动解锁GIL。

全局解释器GIL锁就是同一时间只能有一个线程去访问cpu,但是这并不是说python的效率就很低,因为只有在涉及到大量的计算需要cpu来计算数据的时候,这时候才涉及到线程去访问cpu,这种情况下可以说python的效率要比别的语言低。所以在这个时候我们一般采用多进程
但是在别的场景I/O很多的情况下,不涉及很多的cpu计算,这种情况下是可以多线程运行的。
全局解释器GIL锁只是在CPYTHON解释器中才会有,在别的解释器中是不存在的。
线程的创建threading模块
守护线程问题
from threading import Thread
import time
def func1():
    while True:
        time.sleep(1)
        print('hahaha')
def func2():
    time.sleep(5)
    print('子线程2')
t1 = Thread(target=func1)
t1.setDaemon(True)
t1.start()
Thread(target=func2).start()
print('主线程')
####

主线程
hahaha
hahaha
hahaha
hahaha
子线程2

 
 

说明:守护线程会再非守护线程全部运行结束后才结束。

原因:因为主线程的结束意味着主进程结束,而子线程还没有结束,也就是说这时候主线程也还不能结束,守护线程也不能结束,当子线程结束后,守护线程结束,主线程结束,主进程也就结束了,然后就回收

 
 
解释:
1 主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕 后回收子进程的资源(否则会产生僵尸进程),才会结束, 2 主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。因为主线程的结束意味着进程的结束, 进程整体的资源都将被回收,而进程必须保证非守护线程都运行完毕后才能结束。




同步锁
from threading import Thread
import os,time
def work():
    global n
    temp=n
    time.sleep(0.1)
    n=temp-1
if __name__ == '__main__':
    n=100
    l=[]
    for i in range(100):
        p=Thread(target=work)
        l.append(p)
        p.start()
    for p in l:
        p.join()

    print(n) #结果可能为99
#这个结果为什么是99:因为每个线程在work函数中每次通过cpu计算出来的结果还要重新对n赋值,在写入内存中
 
  
 
同步锁
from threading import Thread,Lock
import os,time
def work():
    global n
    lock.acquire()
    temp=n
    time.sleep(0.1)
    n=temp-1
    lock.release()
if __name__ == '__main__':
    lock=Lock()
    n=100
    l=[]
    for i in range(100):
        p=Thread(target=work)
        l.append(p)
        p.start()
    for p in l:
        p.join()

    print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全

 
  
 

死锁(Lock)与递归锁(RLock)
死锁也叫互斥锁,就是在统一线程中,被同一个锁中的多个acquire 阻塞住。
from threading import Lock as Lock
import time
mutexA=Lock()
mutexA.acquire()
mutexA.acquire()
print(123)
mutexA.release()
mutexA.release()
###阻塞住,打印不出123
 
 
解决办法:用递归锁在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。
 
 
import time
from threading import Thread,RLock
fork_lock = noodle_lock = RLock()
def eat1(name):
    noodle_lock.acquire()
    print('%s 抢到了面条'%name)
    fork_lock.acquire()
    print('%s 抢到了叉子'%name)
    print('%s 吃面'%name)
    fork_lock.release()
    noodle_lock.release()

def eat2(name):
    fork_lock.acquire()
    print('%s 抢到了叉子' % name)
    time.sleep(1)
    noodle_lock.acquire()
    print('%s 抢到了面条' % name)
    print('%s 吃面' % name)
    noodle_lock.release()
    fork_lock.release()

for name in ['哪吒','egon','yuan']:
    t1 = Thread(target=eat1,args=(name,))
    t2 = Thread(target=eat2,args=(name,))
    t1.start()
    t2.start()
 
  
 
信号量
线程的信号量和进程的信号量一样,内部都有一个计数器,每当acquire 内部计数器就减1 当计数器为0的时候就阻塞,当release一次就加1 这时候就可以再执行一个进程。
from threading import Thread,Semaphore
import threading
import time
# def func():
#     if sm.acquire():
#         print (threading.currentThread().getName() + ' get semaphore')
#         time.sleep(2)
#         sm.release()
def func():
    sm.acquire()
    print('%s get sm' %threading.current_thread().getName())
    time.sleep(3)
    sm.release()
if __name__ == '__main__':
    sm=Semaphore(5)
    for i in range(23):
        t=Thread(target=func)
        t.start()
最大线程数为5
信号量和池的区别就是:信号量会开启大量的线程,但是每次执行线程数是一定的。
线程池 因为线程池的数量是一定的,所以开启的线程数和执行的进程数永远是固定的
 
  
 
 
 

线程队列

 
 

queue队列 :使用import queue,用法与进程Queue一样

 
 

queue is especially useful in threaded programming when information must be exchanged safely between multiple threads.

 
 
class queue.Queue(maxsize=0) #先进先出
 
 
import queue

q=queue.Queue()
q.put('first')
q.put('second')
q.put('third')

print(q.get())
print(q.get())
print(q.get())
'''
结果(先进先出):
first
second
third
'''
复制代码
import queue

q=queue.Queue()
q.put('first')
q.put('second')
q.put('third')

print(q.get())
print(q.get())
print(q.get())
'''
结果(先进先出):
first
second
third
'''
复制代码
 
 

class queue.LifoQueue(maxsize=0) #last in fisrt out   后进先出

 
 
import queue

q=queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third')

print(q.get())
print(q.get())
print(q.get())
'''
结果(后进先出):
third
second
first
'''
复制代码
import queue

q=queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third')

print(q.get())
print(q.get())
print(q.get())
'''
结果(后进先出):
third
second
first
'''
复制代码
 
 

class queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列

 
 
import queue

q=queue.PriorityQueue()
#put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c'))

print(q.get())
print(q.get())
print(q.get())
'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')
'''
复制代码
import queue

q=queue.PriorityQueue()
#put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c'))

print(q.get())
print(q.get())
print(q.get())
'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')
'''
线程池
import time
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
def func(i):
    print(i*'*')
    time.sleep(1)
    return i**2

def callb(arg):
    print(arg.result()*'-')

if __name__ == '__main__':
    # thread_pool = ThreadPoolExecutor(5)
    thread_pool = ThreadPoolExecutor(5)
    # ret_lst = []
    for i in range(1,11):
        thread_pool.submit(func,i).add_done_callback(callb)   # 相当于apply_async
        # ret = thread_pool.submit(func,i).add_done_callback(callable)   # 相当于apply_async
        # ret_lst.append(ret)
    thread_pool.shutdown()           # close+join
    # for ret in ret_lst:
    #     print(ret.result())
    print('wahaha')
    # 回调函数

# 进程池
# 线程池


# 当内存不需要共享,且高计算的时候 用进程
# 当内存需要共享,且高IO的时候 用线程
# 当并发很大的时候
    # 多进程 : 多个任务 —— 进程池 :cpu个数、cpu个数+1
    # 多线程 :多个任务  —— 线程池 :cpu个数*5
    # 4C  : 4个、5个进程 —— 20条线程/进程   : 80-100个任务

 
  
 







猜你喜欢

转载自www.cnblogs.com/yyyyyyyyyy/p/9041803.html