Java常见的几种设计模式

单例模式

指一个应用程序中,某个类的实例对象只有一个,你没有办法去new,因为构造器是被private修饰的,一般通过getInstance()的方法来获取它们的实例。

getInstance()的返回值是一个对象的引用,并不是一个新的实例,所以不要错误的理解成多个对象。

实例演示

public class Singleton {

private static Singleton singleton;

private Singleton() {
}

public static Singleton getInstance() {
 if (singleton == null) {
  singleton = new Singleton();
 }
 return singleton;
}
}

上面的是最基本的写法,也叫**懒汉写法(线程不安全)**下面我再公布几种单例模式的写法:

懒汉式写法(线程安全)

public class Singleton {  
   private static Singleton instance;  
   private Singleton (){}  
   public static synchronized Singleton getInstance() {  
   if (instance == null) {  
       instance = new Singleton();  
   }  
   return instance;  
   }  
}

饿汉式写法

public class Singleton {  
   private static Singleton instance = new Singleton();  
   private Singleton (){}  
   public static Singleton getInstance() {  
   return instance;  
   }  
}

静态内部类

public class Singleton {  
   private static class SingletonHolder {  
   private static final Singleton INSTANCE = new Singleton();  
   }  
   private Singleton (){}  
   public static final Singleton getInstance() {  
   return SingletonHolder.INSTANCE;  
   }  
}

枚举

public enum Singleton {  
   INSTANCE;  
   public void whateverMethod() {  
   }  
}

此种写法不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象,但是对于我们的认识可能会有些生疏,如下所示。

双重校验锁

public class Singleton {  
   private volatile static Singleton singleton;  
   private Singleton (){}  
   public static Singleton getSingleton() {  
   if (singleton == null) {  
       synchronized (Singleton.class) {  
       if (singleton == null) {  
           singleton = new Singleton();  
       }  
       }  
   }  
   return singleton;  
   }  
}

在选择写法的时候,我们应该根据业务需求逻辑思考选择最适合我们的写法。

观察者模式

对象间一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。

观察者模式UML图
在这里插入图片描述

上图解析示例:假设有三个人,小美(女,22),小王和小李。小美很漂亮,小王和小李是两个程序猿,时刻关注着小美的一举一动。有一天,小美说了一句:“谁来陪我打游戏啊。”这句话被小王和小李听到了,结果乐坏了,蹭蹭蹭,没一会儿,小王就冲到小美家门口了,在这里,小美是被观察者,小王和小李是观察者,被观察者发出一条信息,然后观察者们进行相应的处理,看代码:

public interface Person {
   //小王和小李通过这个接口可以接收到小美发过来的消息
   void getMessage(String s);
}

这个接口相当于小王和小李的电话号码,小美发送通知的时候就会拨打getMessage这个电话,拨打电话就是调用接口,看不懂没关系,先往下看

public class LaoWang implements Person {

   private String name = "小王";

   public LaoWang() {
   }

   @Override
   public void getMessage(String s) {
       System.out.println(name + "接到了小美打过来的电话,电话内容是:" + s);
   }

}

public class LaoLi implements Person {

   private String name = "小李";

   public LaoLi() {
   }

   @Override
   public void getMessage(String s) {
       System.out.println(name + "接到了小美打过来的电话,电话内容是:->" + s);
   }

}

代码很简单,我们再看看小美的代码:

public class XiaoMei {
   List<Person> list = new ArrayList<Person>();
    public XiaoMei(){
    }

    public void addPerson(Person person){
        list.add(person);
    }

    //遍历list,把自己的通知发送给所有暗恋自己的人
    public void notifyPerson() {
        for(Person person:list){
            person.getMessage("你们过来吧,谁先过来谁就能陪我一起玩儿游戏!");
        }
    }
}

我们写一个测试类来看一下结果对不对

public class Test {
   public static void main(String[] args) {

       XiaoMei xiao_mei = new XiaoMei();
       LaoWang lao_wang = new LaoWang();
       LaoLi lao_li = new LaoLi();

       //小王和小李在小美那里都注册了一下
       xiao_mei.addPerson(lao_wang);
       xiao_mei.addPerson(lao_li);

       //小美向小王和小李发送通知
       xiao_mei.notifyPerson();
   }
}

装饰者模式

对已有的业务逻辑进一步的封装,使其增加额外的功能,如Java中的IO流就使用了装饰者模式,用户在使用的时候,可以任意组装,达到自己想要的效果。 解析示例,我想吃三明治,首先我需要一根大大的香肠,我喜欢吃奶油,在香肠上面加一点奶油,再放一点蔬菜,最后再用两片面包夹一下,很丰盛的一顿午饭,营养又健康。(ps:不知道上海哪里有卖好吃的三明治的,求推荐~)那我们应该怎么来写代码呢? 首先,我们需要写一个Food类,让其他所有食物都来继承这个类,看代码:

public class Food {

   private String food_name;

   public Food() {
   }

   public Food(String food_name) {
       this.food_name = food_name;
   }

   public String make() {
       return food_name;
   };
}

然后我们写几个子类继承它:

//面包类
public class Bread extends Food {

   private Food basic_food;

   public Bread(Food basic_food) {
       this.basic_food = basic_food;
   }

   public String make() {
       return basic_food.make()+"+面包";
   }
}
//奶油类
public class Cream extends Food {

   private Food basic_food;

   public Cream(Food basic_food) {
       this.basic_food = basic_food;
   }

   public String make() {
       return basic_food.make()+"+奶油";
   }
}
//蔬菜类
public class Vegetable extends Food {

   private Food basic_food;

   public Vegetable(Food basic_food) {
       this.basic_food = basic_food;
   }

   public String make() {
       return basic_food.make()+"+蔬菜";
   }

}

这几个类都是差不多的,构造方法传入一个Food类型的参数,然后在make方法中加入一些自己的逻辑,接着是我们的Test类。

public class Test {
   public static void main(String[] args) {
       Food food = new Bread(new Vegetable(new Cream(new Food("香肠"))));
       System.out.println(food.make());
   }
}

一层一层的封装,我们从里往外看:最里面我new了一个香肠,在香肠的外面我包裹了一层奶油,在奶油的外面我又加了一层蔬菜,最外面我放的是面包,我们一起来看一下运行结果吧。
在这里插入图片描述

适配器模式

将两种完全不同的事物联系到一起,就像现实生活中的变压器。假设一个手机充电器需要的电压是20V,但是正常的电压是220V,这时候就需要一个变压器,将220V的电压转换成20V的电压,这样,变压器就将20V的电压和手机联系起来了。

public class Test {
   public static void main(String[] args) {
       Phone phone = new Phone();
       VoltageAdapter adapter = new VoltageAdapter();
       phone.setAdapter(adapter);
       phone.charge();
   }
}
// 手机类
class Phone {

   public static final int V = 220;// 正常电压220v,是一个常量

   private VoltageAdapter adapter;

 // 充电
   public void charge() {
       adapter.changeVoltage();
   }

   public void setAdapter(VoltageAdapter adapter) {
       this.adapter = adapter;
   }
}
// 变压器
class VoltageAdapter {
   // 改变电压的功能
   public void changeVoltage() {
       System.out.println("正在充电...");
       System.out.println("原始电压:" + Phone.V + "V");
       System.out.println("经过变压器转换之后的电压:" + (Phone.V - 200) + "V");
   }
}

运行结果展示
在这里插入图片描述

工厂模式

简单工厂模式:一个抽象的接口,多个抽象接口的实现类,一个工厂类,用来实例化抽象的接口

// 抽象产品类
abstract class Car {
   public void run();

   public void stop();
}
// 具体实现类
class Benz implements Car {
   public void run() {
       System.out.println("Benz开始启动了。。。。。");
   }

   public void stop() {
       System.out.println("Benz停车了。。。。。");
   }
}

class Ford implements Car {
   public void run() {
       System.out.println("Ford开始启动了。。。");
   }

   public void stop() {
       System.out.println("Ford停车了。。。。");
   }
}

// 工厂类
class Factory {
   public static Car getCarInstance(String type) {
       Car c = null;
       if ("Benz".equals(type)) {
           c = new Benz();
       }
       if ("Ford".equals(type)) {
           c = new Ford();
       }
       return c;
   }
}
public class Test {

   public static void main(String[] args) {
       Car c = Factory.getCarInstance("Benz");
       if (c != null) {
           c.run();
           c.stop();
       } else {
           System.out.println("造不了这种汽车。。。");
       }

   }

}

工厂方法模式:有四个角色,抽象工厂模式,具体工厂模式,抽象产品模式,具体产品模式。不再是由一个工厂类去实例化具体的产品,而是由抽象工厂的子类去实例化产品

// 抽象产品角色
public interface Moveable {
   void run();
}

// 具体产品角色
public class Plane implements Moveable {
   @Override
   public void run() {
       System.out.println("plane....");
   }
}
public class Broom implements Moveable {
   @Override
   public void run() {
       System.out.println("broom.....");
   }
}
// 抽象工厂
public abstract class VehicleFactory {
   abstract Moveable create();
}

// 具体工厂
public class PlaneFactory extends VehicleFactory {
   public Moveable create() {
       return new Plane();
   }
}
public class BroomFactory extends VehicleFactory {
   public Moveable create() {
       return new Broom();
   }
}

// 测试类
public class Test {
   public static void main(String[] args) {
       VehicleFactory factory = new BroomFactory();
       Moveable m = factory.create();
       m.run();
   }
}

抽象工厂模式:与工厂方法模式不同的是,工厂方法模式中的工厂只生产单一的产品,而抽象工厂模式中的工厂生产多个产品

/抽象工厂类
public abstract class AbstractFactory {
   public abstract Vehicle createVehicle();
   public abstract Weapon createWeapon();
   public abstract Food createFood();
}
//具体工厂类,其中Food,Vehicle,Weapon是抽象类,
public class DefaultFactory extends AbstractFactory{
   @Override
   public Food createFood() {
       return new Apple();
   }
   @Override
   public Vehicle createVehicle() {
       return new Car();
   }
   @Override
   public Weapon createWeapon() {
       return new AK47();
   }
}
//测试类
public class Test {
   public static void main(String[] args) {
       AbstractFactory f = new DefaultFactory();
       Vehicle v = f.createVehicle();
       v.run();
       Weapon w = f.createWeapon();
       w.shoot();
       Food a = f.createFood();
       a.printName();
   }
}

代理模式(proxy)

有两种,静态代理和动态代理。先说静态代理,解析示例,到了一定的年龄,我们就要结婚,结婚是一件很麻烦的事情,(包括那些被父母催婚的)。有钱的家庭可能会找司仪来主持婚礼,显得热闹,洋气~好了,现在婚庆公司的生意来了,我们只需要给钱,婚庆公司就会帮我们安排一整套结婚的流程。整个流程大概是这样的:家里人催婚->男女双方家庭商定结婚的黄道即日->找一家靠谱的婚庆公司->在约定的时间举行结婚仪式->结婚完毕
婚庆公司打算怎么安排婚礼的节目,在婚礼完毕以后婚庆公司会做什么,我们一概不知。。。别担心,不是黑中介,我们只要把钱给人家,人家会把事情给我们做好。所以,这里的婚庆公司相当于代理角色。

实例展示:

//代理接口
public interface ProxyInterface {
//需要代理的是结婚这件事,如果还有其他事情需要代理,比如吃饭睡觉上厕所,也可以写
void marry();
//代理吃饭(自己的饭,让别人吃去吧)
//void eat();
//代理拉屎,自己的屎,让别人拉去吧
//void shit();
}

接下来,我们看看婚庆公司的代码:

public class WeddingCompany implements ProxyInterface {

private ProxyInterface proxyInterface;

public WeddingCompany(ProxyInterface proxyInterface) {
 this.proxyInterface = proxyInterface;
}

@Override
public void marry() {
 System.out.println("我们是婚庆公司的");
 System.out.println("我们在做结婚前的准备工作");
 System.out.println("节目彩排...");
 System.out.println("礼物购买...");
 System.out.println("工作人员分工...");
 System.out.println("可以开始结婚了");
 proxyInterface.marry();
 System.out.println("结婚完毕,我们需要做后续处理,你们可以回家了,其余的事情我们公司来做");
}

}

再然后是结婚家庭的代码:

public class NormalHome implements ProxyInterface{

@Override
public void marry() {
 System.out.println("我们结婚啦~");
}

}

这个已经很明显了,结婚家庭只需要结婚,而婚庆公司要包揽一切,前前后后的事情都是婚庆公司来做,婚庆公司要思考的问题要做的事是最多的。

来看看测试类代码:

public class Test {
public static void main(String[] args) {
 ProxyInterface proxyInterface = new WeddingCompany(new NormalHome());
 proxyInterface.marry();
}
}
 

运行结果如下:

在这里插入图片描述

生产者/消费者模式

什么是生产者/消费者模式?

某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是广义的,可以是类、函数、线程、进程等)。产生数据的模块,就形象地称为生产者;而处理数据的模块,就称为消费者。在生产者与消费者之间在加个缓冲区,我们形象的称之为仓库,生产者负责往仓库了进商品,而消费者负责从仓库里拿商品,这就构成了生产者消费者模式。结构图如下:

在这里插入图片描述
生产者消费者模式有如下几个优点:
1、解耦
  由于有缓冲区的存在,生产者和消费者之间不直接依赖,耦合度降低。
2、支持并发
  由于生产者与消费者是两个独立的并发体,他们之间是用缓冲区作为桥梁连接,生产者只需要往缓冲区里丢数据,就可以继续生产下一个数据,而消费者只需要从缓冲区了拿数据即可,这样就不会因为彼此的处理速度而发生阻塞。
3、支持忙闲不均
缓冲区还有另一个好处。如果制造数据的速度时快时慢,缓冲区的好处就体现出来 了。当数据制造快的时候,消费者来不及处理,未处理的数据可以暂时存在缓冲区中。 等生产者的制造速度慢下来,消费者再慢慢处理掉。

生产者-消费者模型准确说应该是“生产者-仓储-消费者”模型,这样的模型遵循如下的规则:
1、生产者仅仅在仓储未满时候生产,仓满则停止生产。
2、消费者仅仅在仓储有产品时候才能消费,仓空则等待。
3、当消费者发现仓储没产品可消费时候会通知生产者生产。
4、生产者在生产出可消费产品时候,应该通知等待的消费者去消费

此模型将要结合java.lang.Object的wait与notify、notifyAll方法来实现以上的需求。实例代码如下:
创建所谓的“仓库”,此类是(本质上:共同访问的)共享数据区域

//此类是(本质上:共同访问的)共享数据区域
public class SyncStack {
    
    private String[]  str = new String[10];
    
    private int index;
    
    //供生产者调用
    public synchronized void push(String sst){
        if(index == sst.length()){
            try {
                wait();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
        this.notify();//唤醒在此对象监视器上等待的单个线程 
        str[index] = sst;
        index++;
    }
    
    //供消费者调用  
    public synchronized String pop(){
        if(index == 0){
            try {
                wait();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
        this.notify();
        index--;
        String product = str[index];
        return product;
        
    }
    
    //就是定义一个返回值为数组的方法,返回的是一个String[]引用  
    public String[] pro(){
        return str;
    }
}

创建生产者:

public class Producter implements Runnable {
    
    private SyncStack stack;
    
    public Producter(SyncStack stack){
        this.stack = stack;
    }
    
    public void run(){
        for(int i = 0;i<stack.pro().length;i++){
            String producter = "产品" + i;
            stack.push(producter);
            System.out.println("生产了:" + producter);
            try {
                Thread.sleep(200);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            
        }
    }
}

创建消费者:

public class Consumer implements Runnable {
    
    private SyncStack stack;
    
    public Consumer(SyncStack stack){
        this.stack = stack;
    }
    public void run(){
        for(int i=0;i<stack.pro().length;i++){
            String consumer = stack.pop();
            System.out.println("消费了:" + consumer );
            
            try {
                Thread.sleep(400);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
    }
}

测试类:

public class TestDeam {

    public static void main(String[] args) {
        SyncStack stack = new SyncStack();  
        Consumer p = new Consumer(stack);  
        Producter c = new Producter(stack);  
             
        new Thread(p).start();  
        new Thread(c).start(); 

    }
}

测试结果:

生产了:产品0
消费了:产品0
生产了:产品1
生产了:产品2
消费了:产品2
生产了:产品3
消费了:产品3
生产了:产品4
生产了:产品5
生产了:产品6
消费了:产品5
生产了:产品7
消费了:产品6
消费了:产品7
生产了:产品8
生产了:产品9
消费了:产品8
消费了:产品9

了解更多关注我哟!!!

发布了236 篇原创文章 · 获赞 87 · 访问量 7206

猜你喜欢

转载自blog.csdn.net/weixin_45743799/article/details/104112803