tf.keras Resnet50 imagenet

Resnet50代码

# @Author: ---chenzhenhua
# @E-mail: [email protected]

def identity_block(X, f, filters, stage, block):
    """
    Implementation of the identity block as defined in Figure 4

    Arguments:
    X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
    f -- integer, specifying the shape of the middle CONV's window for the main path
    filters -- python list of integers, defining the number of filters in the CONV layers of the main path
    stage -- integer, used to name the layers, depending on their position in the network
    block -- string/character, used to name the layers, depending on their position in the network

    Returns:
    X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
    """

    # defining name basis
    conv_name_base = "res" + str(stage) + block + "_branch"
    bn_name_base = "bn" + str(stage) + block + "_branch"

    # Retrieve Filters
    F1, F2, F3 = filters

    # Save the input value. You'll need this later to add back to the main path.
    X_shortcut = X

    # First component of main path
    X = Conv2D(filters=F1, kernel_size=(1, 1), strides=(1, 1), padding="valid",
              name=conv_name_base + "2a", kernel_initializer=glorot_uniform(seed=0))(X)
    # valid mean no padding / glorot_uniform equal to Xaiver initialization - Steve

    X = BatchNormalization(axis=3, name=bn_name_base + "2a")(X)
    X = Activation("relu")(X)
    ### START CODE HERE ###

    # Second component of main path (≈3 lines)
    X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding="same",
              name=conv_name_base + "2b", kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + "2b")(X)
    X = Activation("relu")(X)
    # Third component of main path (≈2 lines)

    # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
    X = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding="valid",
              name=conv_name_base + "2c", kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + "2c")(X)

    X = Add()([X, X_shortcut])
    X = Activation("relu")(X)
    ### END CODE HERE ###

    return X


def convolutional_block(X, f, filters, stage, block, s=2):
    """
    Implementation of the convolutional block as defined in Figure 4

    Arguments:
    X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
    f -- integer, specifying the shape of the middle CONV's window for the main path
    filters -- python list of integers, defining the number of filters in the CONV layers of the main path
    stage -- integer, used to name the layers, depending on their position in the network
    block -- string/character, used to name the layers, depending on their position in the network
    s -- Integer, specifying the stride to be used

    Returns:
    X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
    """

    # defining name basis
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    # Retrieve Filters
    F1, F2, F3 = filters

    # Save the input value
    X_shortcut = X

    ##### MAIN PATH #####
    # First component of main path
    X = Conv2D(F1, (1, 1), strides=(s, s), name=conv_name_base + '2a', padding='valid',
              kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
    X = Activation('relu')(X)

    ### START CODE HERE ###

    # Second component of main path (≈3 lines)
    X = Conv2D(F2, (f, f), strides=(1, 1), name=conv_name_base + '2b', padding='same',
              kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
    X = Activation('relu')(X)

    # Third component of main path (≈2 lines)
    X = Conv2D(F3, (1, 1), strides=(1, 1), name=conv_name_base + '2c', padding='valid',
              kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)

    ##### SHORTCUT PATH #### (≈2 lines)
    X_shortcut = Conv2D(F3, (1, 1), strides=(s, s), name=conv_name_base + '1', padding='valid',
                        kernel_initializer=glorot_uniform(seed=0))(X_shortcut)
    X_shortcut = BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)

    # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
    X = layers.add([X, X_shortcut])
    X = Activation('relu')(X)

    ### END CODE HERE ###

    return X


def ResNet50(classes=10):
    """
    Implementation of the popular ResNet50 the following architecture:
    CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
    -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER

    Arguments:
    input_shape -- shape of the images of the dataset
    classes -- integer, number of classes

    Returns:
    model -- a Model() instance in Keras
    """

    # Define the input as a tensor with shape input_shape
    # X_input = Input(input_shape)
    # #X = tf.reshape(X_input, [-1, 256, 256, 1])
    #
    # def reshapes(X_input):
    #     embed = tf.reshape(X_input, [-1, 256, 256, 1])
    #     return embed
    #
    # X = layers.Lambda(reshapes)(X_input)

    #inputs = Input(shape=(32, 32, 3))
    #X_input = Input(shape=input_shape)
    #X_input = Input(shape=(150528,))

    #X = Reshape(ReShape)(X_input)
    #X = Reshape((224,224,3))(X_input)
    #inputs = Input(shape=(150528,))
    #X = Reshape((224,224,3))(inputs)
    inputs = Input(shape=input_shape)
    if ReShape:
        X = Reshape(ReShape)(inputs)
    else:
        X = inputs


    # Zero-Padding
    #X = ZeroPadding2D((3, 3))(X_input)

    # Stage 1
    X = Conv2D(filters=64, kernel_size=(7, 7), strides=(2, 2), name="conv",
              kernel_initializer=glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name="bn_conv1")(X)
    X = Activation("relu")(X)
    X = MaxPooling2D(pool_size=(3, 3), strides=(2, 2))(X)

    # Stage 2
    X = convolutional_block(X, f=3, filters=[64, 64, 256], stage=2, block="a", s=1)
    X = identity_block(X, f=3, filters=[64, 64, 256], stage=2, block="b")
    X = identity_block(X, f=3, filters=[64, 64, 256], stage=2, block="c")
    ### START CODE HERE ###

    # Stage 3 (≈4 lines)
    # The convolutional block uses three set of filters of size [128,128,512], "f" is 3, "s" is 2 and the block is "a".
    # The 3 identity blocks use three set of filters of size [128,128,512], "f" is 3 and the blocks are "b", "c" and "d".
    X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block="a", s=1)
    X = identity_block(X, f=3, filters=[128, 128, 512], stage=3, block="b")
    X = identity_block(X, f=3, filters=[128, 128, 512], stage=3, block="c")
    X = identity_block(X, f=3, filters=[128, 128, 512], stage=3, block="d")

    # Stage 4 (≈6 lines)
    # The convolutional block uses three set of filters of size [256, 256, 1024], "f" is 3, "s" is 2 and the block is "a".
    # The 5 identity blocks use three set of filters of size [256, 256, 1024], "f" is 3 and the blocks are "b", "c", "d", "e" and "f".
    X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=4, block="a", s=2)
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block="b")
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block="c")
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block="d")
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block="e")
    X = identity_block(X, f=3, filters=[256, 256, 1024], stage=4, block="f")

    # Stage 5 (≈3 lines)
    # The convolutional block uses three set of filters of size [512, 512, 2048], "f" is 3, "s" is 2 and the block is "a".
    # The 2 identity blocks use three set of filters of size [256, 256, 2048], "f" is 3 and the blocks are "b" and "c".
    X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=5, block="a", s=2)
    X = identity_block(X, f=3, filters=[512, 512, 2048], stage=5, block="b")
    X = identity_block(X, f=3, filters=[512, 512, 2048], stage=5, block="c")

    # filters should be [256, 256, 2048], but it fail to be graded. Use [512, 512, 2048] to pass the grading

    # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
    # The 2D Average Pooling uses a window of shape (2,2) and its name is "avg_pool".
    X = AveragePooling2D(pool_size=(2, 2), padding="same")(X)

    ### END CODE HERE ###

    # output layer
    X = Flatten()(X)
    X = Dense(classes, activation="softmax", name="fc" + str(classes), kernel_initializer=glorot_uniform(seed=0))(X)
    
    #output = Reshape((150528,))(X)
    # Create model
    model = Model(inputs=inputs, outputs=X, name="model_ResNet50")

    return model
发布了19 篇原创文章 · 获赞 3 · 访问量 416

猜你喜欢

转载自blog.csdn.net/u011740601/article/details/103519742
今日推荐