计算机网络概述(上)

计算机网络的基本概念

一、计算机网络的概念

计算机网络是利用通信设备与通信链路或者通信网络,互联位置不同、功能自治的计算机系统,并遵循一定的规则实现计算机系统之间的信息交换,即:计算机网络是互连的、自治的计算机的集合。

二、网络协议

Internet中互连的端系统、分组交换设备或者其他网络设备在进行信息发送、接收或者转发的过程中,都需要遵循一些规则或约定,即网络协议。

三、协议的三要素

协议是网络通信实体之间在数据交换过程中需要遵循的规则或约定,是计算机网络有序运行的重要保证。任何一个协议都会有3个基本要素:语法、语义和时序。

语法:语法定义实体之间交换信息的格式与结构,或定义实体之间传输信号的电平等。

语义:语义就是定义实体之间交换的信息中需要发送哪些控制信息,这些信息的具体含义,以及针对不同含义的控制信息,接受信息端如何响应。

时序:时序也称为同步,定义实体之间交换信息的顺序以及如何匹配或适应彼此的速度。

四、计算机网络的功能

计算机网络的功能在于不同主机之间实现快速的信息交换。通过信息交换,计算机网络可实现资源共享这一核心功能,包括硬件资源共享,软件资源共享和信息资源共享。

五、计算机网络的分类

1. 按覆盖范围分类:

(1)个域网 PAN 。个域网通常是由个人设备通过无线通信技术构成小范围的网络,实现个人设备间的数据传输。个域网通常覆盖范围在 1~10m。

(2)局域网 LAN 。局域网通常部署在办公室、办公楼、厂区、校园等局部区域内,采用高速有线或无线链路连接主机,实现局部范围内高速数据传输。局域网通常覆盖范围在 10m~1km。

(3)城域网 MAN 。城域网是指覆盖在一个城市范围的网络,覆盖范围通常在 5~50km。

(4)广域网 WAN 。广域网覆盖范围在几十到几千Km,通常跨越更大的地理空间,可以实现异地城域网或局域网的互连。

2. 按拓扑结构分类:

网络拓扑是指网络中的主机,网络设备间的物理连接关系与布局。

按拓扑结构,计算机网络可以分为总线型拓扑结构、环形拓扑结构、星型拓扑结构、混合拓扑结构、树形拓扑结构和网状拓扑结构。

(1)总线型拓扑结构

总线型拓扑结构网络采用一条广播信道作为公共传输介质,称为总线,所有的结点均与总线连接,结点间的通信均通过共享的总线进行。由于总线是一条广播信道,所以任一节点通过总线发送数据时其他节点都会接收到承载这些数据的信号。

总线型拓扑结构的优点:

1. 所需电缆数量少;

2. 结构简单;

3. 易于扩展。

总线型拓扑结构的缺点:

1. 通信范围受限;

2. 故障诊断和隔离比较困难;

3. 容易产生冲突。

(2)环型拓扑结构

环形拓扑结构网络利用通信链路将所有结点连接成一个闭合的环。环中的数据传输通常是单向的(也可双向)传输,每个结点可以从环中接收数据,并向环中进一步转发数据。

环形拓扑结构的优点:

1. 所需电缆长度短;

2. 可以使用光纤;

3. 易于避免冲突。

环形拓扑结构的缺点:

1. 某结点的故障容易引起全网瘫痪;

2. 新结点的加入或撤出过程比较麻烦;

3. 存在等待时间问题。

(3)星形拓扑结构

星形拓扑结构网络包括一个中央结点,网络中的主机通过点对点通信链路与中央结点连接。中央结点通常是集线器、交换机等设备,主机之间的通信都需要通过中央结点进行。

星形拓扑结构的优点:

1. 易于监控与管理;

2. 故障诊断与隔离容易。

星形拓扑结构的缺点:

1. 中央结点是网络的瓶颈,一旦故障,全网瘫痪;

2. 网络规模受限于中央结点的端口数量。

(4)混合拓扑结构

混合拓扑结构网络是由两种以上简单拓扑结构网络混合连接而成的网络。绝大多数实际网络的拓扑都属于混合拓扑结构。

混合拓扑结构的优点:

1. 易于扩展,可以构建不同规模网络;

2. 可根据需要优选网络结构。

混合拓扑结构的缺点:

1. 网络结构复杂;

2. 管理与维护复杂。

(5)树型拓扑结构

树型拓扑结构网络可以看作是总线型拓扑或者星形拓扑网络的扩展。目前,很多局域网都采用这种拓扑结构。

树形拓扑结构的优点:

1. 易于扩展;

2. 故障隔离容易。

树形结构的缺点:

对根结点的可靠性要求高,一旦根结点故障,则可能导致网络大范围无法通信。

(6)网状拓扑结构

网状拓扑结构中的结点通过多条链路与不同的结点直接连接。

网状拓扑结构的优点:

1. 网络可靠性高;

2. 一条或多条链路故障时,网络仍可联通。

网状拓扑结构的缺点:

1. 网络结构复杂;

2. 造价成本高;

3. 选路协议复杂。

3. 按交换方式分类:

数据交换是指网络通过彼此互联的结点间的数据转接,实现将数据从发送结点送达目的结点的过程和技术。按网络所采用的数据交换技术,计算机网络可以分为电路交换网络、报文交换网络和分组交换网络。

4. 按网络用户属性分类:

(1)公用网。公用网是指由国家或企业出资建设,面向公众提供收费或免费服务的网络,用户只要按规定缴纳费用都可以接入网络,使用网络设施与服务。

(2)私有网。私有网是指由某个组织(政府部门或者企业)出资建设,专门面向该组织内部业务提供网络传输服务,不向公众开放的网络。

计算机网络结构

一、网络边缘

连接到网络上的计算机、服务器、智能手机、智能传感器、智能家电等称为主机或端系统。这些端系统位于网络的最边缘,因此,连接到网络上的所有端系统构成了网络边缘。网络边缘上的端系统运行分布式网络应用,在端系统之间进行数据交换,实现应用目的。

二、接入网络

接入网络是实现网络边缘的端系统与网络核心连接与接入的网络。常见的接入网络技术包括电话拨号接入、非对称数字用户线路ADSL、混合光纤同轴电缆HFC接入网络、局域网和移动接入网络。

三、网络核心

网络核心是由通信链路互连的分组交换设备构成的网络,作用是实现网络边缘中主机之间的数据中继与转发。

数据交换技术与计算机网络性能

一、数据交换的基本概念

为了连接更大的范围、更多数量的主机,可以将许多交换设备互连,构成一个数据中继与转发的“中间网络”,然后再将主机连接到距离较近的交换设备上,主机之间的数据传输通过“中间网络”实现中继与转发。这个中间网络不需要关心所传输数据的内容,而只是为这些数据从一个结点到另一个结点直至达到目的结点提供数据中继与交换功能,称之为数据交换网络,组成交换网络的结点(即交换设备)称为交换结点,交换结点和传输介质的集合称为通信子网,即网络核心。

二、数据交换技术

常见的数据交换技术包括电路交换、报文交换和分组交换。

1. 电路交换

在电路交换网络中,首先需要通过中间交换结点为两台主机之间建立一条专用的通信线路,称为电路,然后再利用该电路进行通信,通信结束后再拆除电路。利用电路交换进行通信,包括建立电路、传输数据和拆除电路三个阶段。

2. 报文交换

报文交换也称为消息交换,其工作过程为:发送方把要发送的信息附加上 发送/接收主机的地址及其他控制信息,构成一个完整的报文,然后以报文为单位在交换网络的各结点之间以 存储-转发 的方式传送,直至送达目的主机。

3. 分组交换

(1)分组交换的基本原理

分组交换需要将待传输数据(即报文)分割成较小的数据块,每个数据块附加上地址、序号等控制信息构成数据分组,每个分组独立传输到目的地,目的地将收到的分组重新组装,还原为报文。分组传输过程通常也采用 存储-转发 交换方式。

(2)分组交换的优点

1. 交换设备存储容量要求低;

2. 交换速度快;

3. 可靠传输效率高;

4. 更加公平。

(3)分组长度的确定

1. 分组长度与延迟时间。分组交换网络的 存储-转发 过程可以抽象为一个排队系统,基于排队论的分析发现,当分组具有相同的长度时,分组在交换过程中的延迟时间较小。因此,把报文按一定的标准长度分割为“分组”,就能够使交换设备以分组为单位对信息进行处理,从而缩短信息在交换过程中的延迟时间。

2. 分组长度与误码率。通信链路的信道误码率是确定分组长度时另一个需要重点考虑的因素。设分组长度为位,其中位为分组头长度,数据长度为  位,即有

若信道误码率位  ,则分组传输正确的概率(只考虑分组中位误码的情况)为

分组传输错误要求重发的概率为  ,在考虑到可能多次连续传输错误的情况下,可以得到最佳分组长度  为

最高信道利用率可以表示为

三、计算机网络的主要性能指标

1. 速率与带宽

速率是指网络单位时间内传送的数据量,用以描述网络传输数据的快慢,也称为数据传输速率或数据速率。

计算机网络传输的数据是以位为信息单位的二进制数据,速率的基本单位是 bit/s (位每秒),也称速率为比特率。同时也会用“带宽”这一术语描述速率。

在信号或信号处理领域中,带宽原本是指信号具有的频带宽度,即信号成分的最高频率与最低频率之差,单位为Hz(赫兹)。

在计算机网络中,当描述一条链路或信道的数据传输能力时,经常使用“带宽”一词表示链路或信道的最高数据速率,单位也是 bit/s。

2. 时延

时延是指数据从网络中的一个结点(主机或交换设备等)到达另一结点所需要的时间。分组的每跳传输过程主要产生四类时间延迟:

(1)结点处理时延。每个分组到达交换结点时,交换设备通常可能需要验证分组是否有差错,根据分组携带的信息检索转发表,确定如何转发该分组,还有可能修改分组的部分控制信息等。针对分组进行这些操作所消耗的时间总和,构成了结点处理时延,记为  。结点处理时延通常很小,并且对不同分组的结点处理时延变化也非常小,因此,在讨论网络总时间延迟时常常被忽略。

(2)排队时延。当一个分组到达交换结点,经过处理并明确需要从哪个输出链路进行转发后,分组需要在交换结点内被交换到输出链路,等待从输出链路发送到下一个交换结点(或目的主机)。此时,在该分组之前很有可能还有其他分组正在或等待交换到相同的输出链路,或者交换到输出链路后在该分组之前还有其他分组在等待通过输出链路进行发送。这些情形都需要分组分组在交换结点进行暂时缓存,排队等待输出链路可用,分组在缓存中排队等待的时间就是排队时延,记为  。

(3)传输时延。当一个分组在输出链路发送时,从发送第一位开始,到发送完最后一位为止,所用的时间,称为传输时延,也称为发送时延,记为  。假设分组长度为 Lbit,链路带宽(即速率)为 R bit/s,则分组的传输时延为

(4)传播时延。分组中的每个比特在发送到物理介质上时,是利用物理信号的某种特征表示的(即编码),比如利用脉冲电信号的高电平表示“1”,低电平表示“0”。不同物理信号在不同介质内的传播速度不同,比如真空中的光信号传播速度与电信号在铜介质中的传播速度是不同的。信号从发送端发送出来,经过一定距离的物理链路,到达接收端所需要的时间,称为传播时延,记为  。显然,若物理链路长度为 D 米,信号传播速度为 V 米每秒,则传播时延为

3. 时延带宽积

一段物理链路的传播时延与链路带宽的乘积,称为时延带宽积,记为 G ,于是

4. 丢包率

丢包率常被用于评价和衡量网络性能的指标,在很大程度上可以反映网络的拥塞程度,因为引发网络丢包的主要因素是网络堵塞。

丢包率可以定义为

式中,  为发送分组总数;  为接收分组总数;  为丢失分组总数。

5. 吞吐量

吞吐量表示在单位时间内源主机通过网络向目的主机实际送达的数据量,单位为 bit/s 或 B/S(字节每秒),记为 Thr 。吞吐量经常用于度量网络的实际数据传送能力,即网络实际可以达到的源主机到目的主机的数据传送速率。

发布了54 篇原创文章 · 获赞 4 · 访问量 9177

猜你喜欢

转载自blog.csdn.net/yichen97/article/details/103788732