数论函数

数论函数

\(\mathbf{D}=\mathbf{Z_+}\) 的函数

常见数论函数

\[\epsilon(n)=[n=1]\]

\[id^k(n)=n^k:\begin{cases}1(n)=1&k=0\\id(n)=n&k=1\\\vdots&k>1\end{cases}\]

\[\sigma^k(n)=\sum_{d|n}d^k:\begin{cases}\tau(n)=\sum_{d|n}1&k=0\\\sigma(n)=\sum_{d|n}d&k=1\\\vdots&k>1\end{cases}\]

\[\varphi(n)=\sum_{d|n,d\in\mathbf{P}}^n1-\frac{1}{d}\]

莫比乌斯函数:

\[\mu(n)=\begin{cases}0&\exists d:d^2|n\\(-1)^{\omega(n)}&otherwise\end{cases}\]

积性函数

对于数论函数 \(f\)\(\forall n,m\ s.t.\ n\bot m\),使得 \(f(nm)=f(n)\times f(m)\),则称 \(f\) 为积性函数。

对于数论函数 \(f\)\(\forall n,m\),使得 \(f(nm)=f(n)\times f(m)\),则称 \(f\) 为完全积性函数。

\(f\)\(g\) 为积性函数,则

\[\begin{aligned}h(x)&=f(x^k)\\h(x)&=f^k(x)\\h(x)&=f(x)g(x)\\h(x)&=\sum_{d|x}f(x)g(\frac{x}{d})\end{aligned}\]

均为积性函数。

常见积性函数

完全积性:\(\epsilon,id^k,\cdots\)

积性:\(\varphi,\mu,\sigma^k,\cdots\)

Dirichlet卷积

\[(f*g)(n)=\sum_{d|n}f(d)\times g(\frac{n}{d})\]

\(f\)\(g\) 均为积性函数,则 \(f\ast g\) 为积性函数(令\(n=\prod_{i=1}^kp_i^{c_i}\)

\[ \begin{aligned} (f\ast g)(n)&=\sum_{i_1=0}^{c_1}\sum_{i_2=1}^{c_2}\cdots\sum_{i_k=1}^{c_k}(f(\prod_{j=1}^kp_j^{i_j})\times g(\prod_{j=1}^kp_j^{c_j-i_j}))\\ &=\sum_{i_1=0}^{c_1}\sum_{i_2=1}^{c_2}\cdots\sum_{i_k=1}^{c_k}\prod_{j=1}^k(f(p_j^{i_j})\times g(p_j^{c_j-i_j}))\\ &=\prod_{j=1}^k\sum_{i=1}^{c_j}(f(p_j^i)\times g(p_j^{c_j-i}))\\ &=\prod_{j=1}^k(f\ast g)(p_j^{c_j}) \end{aligned}\]

常见卷积

\[\tau=1\ast 1\]

\[\sigma=\tau\ast 1\]

\[\epsilon=\mu\ast 1\]

\[id=\varphi\ast 1\]

\(\sum_{d|n}\mu(d)=[n=1]\) 证明:

\(n=1\) 时,显然成立;

\(n\not=1\) 时,对于 \(\forall d=\prod_{i=1}^kp_i^{0/1}\ s.t.\ p1\not|\ d\) 使得 \(\mu(d)+\mu(p_1d)=0\), 由于 \(d\)\(p_1d\) 一一对应

得证。

\(\sum_{d|n}\varphi(d)=n\) 证明:

\(n=p^k\ s.t.\ p\in\mathbf{P}\) 时,\(\sum_{i=0}^k\varphi(p_i)=1+(p-1)\sum_{i=0}^{k-1}p_i=p_k\)

对于 \(\forall n,m\ s.t.\ n\bot m\)

\(\sum_{d|nm}\varphi(d)=\sum_{d1|n}\sum_{d2|m}\varphi(d1d2)=\sum_{d1|n}\sum_{d2|m}\varphi(d1)\varphi(d2)=\sum_{d1|n}\varphi(d1)\sum_{d2|m}\varphi(d2)=nm\)

得证。

莫比乌斯反演

\[f=g\ast 1\iff g=\mu\ast f\]

证明:

\(f\ast\mu=g\ast 1\ast\mu=g\ast\epsilon=g\)

得证。

1.1 Description:

\[\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\]

Solution:

\(n\le m\)

\[\begin{aligned}&\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=k]\\=&\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}[\gcd(i,j)=1]=\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\epsilon(\gcd(i,j))\\=&\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor}\sum_{d|\gcd(i,j)}\mu(d)=\sum_{d=1}^{\lfloor\frac{n}{k}\rfloor}\mu(d)\lfloor\frac{n}{dk}\rfloor\lfloor\frac{m}{dk}\rfloor\end{aligned}\]

数论分块求解,时间复杂度 \(O(\sqrt n)\)

1.2 Description:

\[\sum_{i=1}^n\text{lcm}(i,n)\]

Solution:

\(gcd(i,n)=gcd(n-i,n)\) 可得

\[\begin{aligned}Ans&=\sum_{i=1}^n\frac{i\times n}{\gcd(i,n)}\\&=\frac{1}{2}(\sum_{i=1}^{n-1}\frac{i\times n}{\gcd(i,n)}+\sum_{i=n-1}^1\frac{i\times n}{gcd(i,n)})+n\\&=\frac{n(\sum_{i=1}^n\frac{n}{\gcd(i,n)}+1)}{2}\end{aligned}\]

其中

\[\begin{aligned}\sum_{i=1}^n\frac{n}{\gcd(i,n)}&=\sum_{d|n}\frac{n}{d}\sum_{i=1}^n[\gcd(i,n)=d]\\&=\sum_{d|n}\frac{n}{d}\varphi(\frac{n}{d})=\sum_{d|n}d\varphi(d)\end{aligned}\]

所以

\[Ans=\frac{n(\sum_{d|n}d\varphi(d)+1)}{2}\]

\[F(n)=\sum_{d|n}d\varphi(d)\]

显然 \(F(n)\) 是积性函数,利用线性筛

\(m\bot p\)

\[F(mp)=\sum_{d|m}(d\varphi(d)+dp\varphi(dp))=F(m)(p(p-1)+1)\]

\[\begin{aligned}F(mp^k\times p)&=\sum_{d|m}(d\varphi(d)+dp\varphi(dp)+dp^2\varphi(dp^2)\cdots+dp^{k+1}\varphi(dp^{k+1}))\\&=\sum_{d|m}(d\varphi(d)+dp\varphi(dp)+dp^2\varphi(dp)p+\cdots+dp^{k+1}\varphi(dp)p^{k})\\&=\sum_{d|m}(d\varphi(d)+dp\varphi(d)\varphi(p-1)(1+p^2+\cdots+p^{2k}))\\&=\sum_{d|m}(d\varphi(d)(1+p(p-1)\frac{p^{2k+2}-1}{p^2-1}))\\&=F(m)\frac{p^{2k+3}+1}{p+1}\end{aligned}\]

欧拉筛实现,时间复杂度 \(O(n\ln\ln n)\)

1.3 Description:

\[\sum_{i=1}^n\sum_{i=1}^m[\gcd(i,j)\in P]\]

Solution:

\[\begin{aligned}Ans&=\sum_{p=1}^n[p\in P]\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\\&=\sum_{p=1}^n[p\in P]\sum_{d=1}^n\mu(d)\lfloor\frac{n}{dp}\rfloor\lfloor\frac{m}{dp}\rfloor\\&=\sum_{p=1}^n[p\in P]\sum_{p|t}\mu(\frac{t}{p})\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor\\&=\sum_{t=1}^n\sum_{p|t}[p\in P]\mu(\frac{t}{p})\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor\end{aligned}\]

\[F(n)=\sum_{d|n}[d\in P]\mu(\frac{n}{d})\]

\[Ans=\sum_{t=1}^n\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor F(t)\]

对于 \(F(x)\),令 \(n\bot p\)

\[F(np)=\sum_{d|n}([d\in P]\mu(\frac{np}{d})+[dp\in P]\mu(\frac{np}{dp}))=-F(n)+\mu(n)\]

\[F(np^k)=\sum_{d|n}([d\in P]\mu(\frac{np^k}{d})+[dp\in P]\mu(\frac{np^k}{dp})+[dp^2\in P]\mu(\frac{np^k}{dp^2})+\cdots)=\mu(np^{k-1})\]

欧拉筛预处理 \(F(n)\),数论分块计算 \(Ans\),时间复杂度 \(O(n\ln\ln n+q\sqrt n)\)

1.ex Description:

1.ex.1

\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)=\sum_{d=1}\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\varphi(d)\]

1.ex.2

\[\sum_{i=1}^n\sum_{j=1}^m\text{lcm}(i,j)=\sum_{k=1}^n\frac{(\lfloor\frac{n}{k}\rfloor+1)\lfloor\frac{n}{k}\rfloor(\lfloor\frac{m}{k}\rfloor+1)\lfloor\frac{m}{k}\rfloor}{4}k\sum_{d|k}\mu(d)d\]

1.ex.3

\[\tau(nm)=\sum_{i|n}\sum_{j|n}[gcd(i,j)=1]\]

\[\sum_{i=1}^n\sum_{j=1}^m\tau(ij)=\sum_{d=1}^n\mu(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{di}\rfloor\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{di}\rfloor\]

1.ex.4

\[\gcd(\text{Fib}(i)\text{Fib}(j))=\text{Fib}(\gcd(i,j))\]

\[\prod_{i=1}^n\prod_{i=1}^m\text{Fib}(\gcd(i,j))=\prod_{k=1}^n\text{Fib}(k)^{\sum_{d=1}^{\lfloor\frac{n}{k}\rfloor}\mu(d)\lfloor\frac{n}{dk}\rfloor\lfloor\frac{m}{dk}\rfloor}=\prod_{t=1}^n(\prod_{k|t}\text{Fib}(k)^{\mu(\frac{t}{k})})^{\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor}\]

杜教筛

对于数论函数 \(f\) 定义 \(S(f,n)=\sum_{i=1}^nf(i)\),则存在恒等式

\[S(f\ast g,n)=\sum_{i=1}^ng(i)S(f,\lfloor\frac{n}{i}\rfloor)\]

证明:

\(S(f\ast g,n)=\sum_{i=1}^n\sum_{d|i}g(i)f(\frac{i}{d})=\sum_{d=1}^ng(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f(i)=\sum_{i=1}^ng(i)S(f,\lfloor\frac{n}{i}\rfloor)\)

得证。

整理可得

\[g(1)S(f,n)=S(f\ast g,n)-\sum_{i=2}^ng(i)S(f,\lfloor\frac{n}{i}\rfloor)\]

2.1 Description:

\[S(\mu,n)\]

solution:

由于 \(\varepsilon=\mu\ast 1\),可得

\[S(\mu,n)=1-\sum_{i=1}^nS(\mu,\lfloor\frac{n}{i}\rfloor)\]

直接递归计算时间复杂度是 \(O(n^{\frac{3}{4}})\) 的,一般是预处理前 \(n^\frac{2}{3}\) 项,这样时间复杂度能达到 \(O(n^\frac{2}{3})\)

猜你喜欢

转载自www.cnblogs.com/Ryedii-blog/p/12215102.html
今日推荐