c++:继承(4)虚继承&虚基类

1.虚基类:

虚继承是解决C++多重继承问题的一种手段,从不同途径继承来的同一基类,会在派生类中存在多份拷贝。这将存在两个问题:

  • 浪费存储空间
  • 存在二义性问题。

通常可以将派生类对象的地址赋值给基类对象,实现的具体方式是,将基类指针指向继承类(继承类有基类的拷贝)中的基类对象的地址,但是多重继承可能存在一个基类的多份拷贝,这就出现了二义性。

虚基类使得从多个类(它们的基类相同)派生出的对象只继承一个基类对象。例如,通过在类声明中使用关键字 virtual ,可以使这些派生类只保留虚基类的一个副本。

例如上例,如下声明后,Derive1 和 Derive2 虚继承了 Base后, Base 成为了Derive1 和 Derive2 的虚基类,那 Derive3 就可以安全的多继承 Derive1 和 Derive2了:

class Base//成为Derive1和Derive2的虚基类
{};

class Derive1 :virtual public Base//虚继承Base
{};

class Derive2 :virtual public Base//虚继承Base
{};

class Derive3 : public Derive1,public Derive2
{};

int main()
{
    Derive3 derive3;
    Base* base = &derive3;//不会出现错误
    
    return 0;
}

2.虚继承:

为了解决多继承时的命名冲突和冗余数据问题,C++ 提出了虚继承,使得在派生类中只保留一份间接基类的成员。

下面通过一个例子来向大家展示:

//间接基类A
class A{
protected:
    int m_a;
};

//直接基类B
class B: virtual public A
{  //虚继承
protected:
    int m_b;
};

//直接基类C
class C: virtual public A
{  //虚继承
protected:
    int m_c;
};

//派生类D
class D: public B, public C
{
public:
    void seta(int a){ m_a = a; }  //正确
    void setb(int b){ m_b = b; }  //正确
    void setc(int c){ m_c = c; }  //正确
    void setd(int d){ m_d = d; }  //正确
private:
    int m_d;
};

int main()
{
    D d;
    return 0;
}

这段代码使用虚继承重新实现了上图所示的菱形继承,这样在派生类 D 中就只保留了一份成员变量 m_a,直接访问就不会再有歧义了。

虚继承的目的是让某个类做出声明,承诺愿意共享它的基类。其中,这个被共享的基类就称为虚基类(Virtual Base Class),本例中的 A 就是一个虚基类。在这种机制下,不论虚基类在继承体系中出现了多少次,在派生类中都只包含一份虚基类的成员。

现在让我们重新梳理一下本例的继承关系,如下图所示:


观察这个新的继承体系,我们会发现虚继承的一个不太直观的特征:必须在虚派生的真实需求出现前就已经完成虚派生的操作。在上图中,当定义 D 类时才出现了对虚派生的需求,但是如果 B 类和 C 类不是从 A 类虚派生得到的,那么 D 类还是会保留 A 类的两份成员。

换个角度讲,虚派生只影响从指定了虚基类的派生类中进一步派生出来的类,它不会影响派生类本身。

在实际开发中,位于中间层次的基类将其继承声明为虚继承一般不会带来什么问题。通常情况下,使用虚继承的类层次是由一个人或者一个项目组一次性设计完成的。对于一个独立开发的类来说,很少需要基类中的某一个类是虚基类,况且新类的开发者也无法改变已经存在的类体系。

C++标准库中的 iostream 类就是一个虚继承的实际应用案例。iostream 从 istream 和 ostream 直接继承而来,而 istream 和 ostream 又都继承自一个共同的名为 base_ios 的类,是典型的菱形继承。此时 istream 和 ostream 必须采用虚继承,否则将导致 iostream 类中保留两份 base_ios 类的成员。



虚基类成员的可见性

因为在虚继承的最终派生类中只保留了一份虚基类的成员,所以该成员可以被直接访问,不会产生二义性。此外,如果虚基类的成员只被一条派生路径覆盖,那么仍然可以直接访问这个被覆盖的成员。但是如果该成员被两条或多条路径覆盖了,那就不能直接访问了,此时必须指明该成员属于哪个类。

以图2中的菱形继承为例,假设 B 定义了一个名为 x 的成员变量,当我们在 D 中直接访问 x 时,会有三种可能性:

  • 如果 B 和 C 中都没有 x 的定义,那么 x 将被解析为 B 的成员,此时不存在二义性。
  • 如果 B 或 C 其中的一个类定义了 x,也不会有二义性,派生类的 x 比虚基类的 x 优先级更高。
  • 如果 B 和 C 中都定义了 x,那么直接访问 x 将产生二义性问题。


可以看到,使用多继承经常会出现二义性问题,必须十分小心。上面的例子是简单的,如果继承的层次再多一些,关系更复杂一些,程序员就很容易陷人迷魂阵,程序的编写、调试和维护工作都会变得更加困难,因此我不提倡在程序中使用多继承,只有在比较简单和不易出现二义性的情况或实在必要时才使用多继承,能用单一继承解决的问题就不要使用多继承。也正是由于这个原因,C++ 之后的很多面向对象的编程语言,例如 JavaC#PHP 等,都不支持多继承。

参考:http://c.biancheng.net/view/2280.html

发布了104 篇原创文章 · 获赞 15 · 访问量 7781

猜你喜欢

转载自blog.csdn.net/Kobe51920/article/details/103905902