LockSupport详解

concurrent包是基于AQS (AbstractQueuedSynchronizer)框架的,AQS框架借助于两个类:

  • Unsafe(提供CAS操作)
  • LockSupport(提供park/unpark操作)

因此,LockSupport非常重要。

两个重点

(1)操作对象

归根结底,LockSupport.park()和LockSupport.unpark(Thread thread)调用的是Unsafe中的native代码:

//LockSupport中
public static void park() { UNSAFE.park(false, 0L); } 
//LockSupport中
public static void unpark(Thread thread) { if (thread != null) UNSAFE.unpark(thread); } 

Unsafe类中的对应方法:

    //park
    public native void park(boolean isAbsolute, long time); //unpack public native void unpark(Object var1); 

park函数是将当前调用Thread阻塞,而unpark函数则是将指定线程Thread唤醒。

与Object类的wait/notify机制相比,park/unpark有两个优点:

  • 以thread为操作对象更符合阻塞线程的直观定义
  • 操作更精准,可以准确地唤醒某一个线程(notify随机唤醒一个线程,notifyAll唤醒所有等待的线程),增加了灵活性。

(2)关于“许可”

在上面的文字中,我使用了阻塞和唤醒,是为了和wait/notify做对比。

  • 其实park/unpark的设计原理核心是“许可”:park是等待一个许可,unpark是为某线程提供一个许可。
    如果某线程A调用park,那么除非另外一个线程调用unpark(A)给A一个许可,否则线程A将阻塞在park操作上。

  • 有一点比较难理解的,是unpark操作可以再park操作之前。
    也就是说,先提供许可。当某线程调用park时,已经有许可了,它就消费这个许可,然后可以继续运行。这其实是必须的。考虑最简单的生产者(Producer)消费者(Consumer)模型:Consumer需要消费一个资源,于是调用park操作等待;Producer则生产资源,然后调用unpark给予Consumer使用的许可。非常有可能的一种情况是,Producer先生产,这时候Consumer可能还没有构造好(比如线程还没启动,或者还没切换到该线程)。那么等Consumer准备好要消费时,显然这时候资源已经生产好了,可以直接用,那么park操作当然可以直接运行下去。如果没有这个语义,那将非常难以操作。

  • 但是这个“许可”是不能叠加的,“许可”是一次性的。
    比如线程B连续调用了三次unpark函数,当线程A调用park函数就使用掉这个“许可”,如果线程A再次调用park,则进入等待状态。

Unsafe.park和Unsafe.unpark的底层实现原理

在Linux系统下,是用的Posix线程库pthread中的mutex(互斥量),condition(条件变量)来实现的。
mutex和condition保护了一个_counter的变量,当park时,这个变量被设置为0,当unpark时,这个变量被设置为1。

源码:
每个Java线程都有一个Parker实例,Parker类是这样定义的:

class Parker : public os::PlatformParker { private: volatile int _counter ; ... public: void park(bool isAbsolute, jlong time); void unpark(); ... } class PlatformParker : public CHeapObj<mtInternal> { protected: pthread_mutex_t _mutex [1] ; pthread_cond_t _cond [1] ; ... } 

可以看到Parker类实际上用Posix的mutex,condition来实现的。
在Parker类里的_counter字段,就是用来记录“许可”的。

  • park 过程

当调用park时,先尝试能否直接拿到“许可”,即_counter>0时,如果成功,则把_counter设置为0,并返回:

void Parker::park(bool isAbsolute, jlong time) { // Ideally we'd do something useful while spinning, such // as calling unpackTime(). // Optional fast-path check: // Return immediately if a permit is available. // We depend on Atomic::xchg() having full barrier semantics // since we are doing a lock-free update to _counter. if (Atomic::xchg(0, &_counter) > 0) return; 

如果不成功,则构造一个ThreadBlockInVM,然后检查_counter是不是>0,如果是,则把_counter设置为0,unlock mutex并返回:

ThreadBlockInVM tbivm(jt);  
if (_counter > 0) { // no wait needed _counter = 0; status = pthread_mutex_unlock(_mutex); 

否则,再判断等待的时间,然后再调用pthread_cond_wait函数等待,如果等待返回,则把_counter设置为0,unlock mutex并返回:

if (time == 0) { status = pthread_cond_wait (_cond, _mutex) ; } _counter = 0 ; status = pthread_mutex_unlock(_mutex) ; assert_status(status == 0, status, "invariant") ; OrderAccess::fence(); 
  • unpark 过程

当unpark时,则简单多了,直接设置_counter为1,再unlock mutex返回。如果_counter之前的值是0,则还要调用pthread_cond_signal唤醒在park中等待的线程:

void Parker::unpark() { int s, status ; status = pthread_mutex_lock(_mutex); assert (status == 0, "invariant") ; s = _counter; _counter = 1; if (s < 1) { if (WorkAroundNPTLTimedWaitHang) { status = pthread_cond_signal (_cond) ; assert (status == 0, "invariant") ; status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; } else { status = pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; status = pthread_cond_signal (_cond) ; assert (status == 0, "invariant") ; } } else { pthread_mutex_unlock(_mutex); assert (status == 0, "invariant") ; } }  

转载:  https://www.jianshu.com/p/e3afe8ab8364

猜你喜欢

转载自www.cnblogs.com/minikobe/p/11937352.html