Locksupport 与 Condition

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013283727/article/details/83547908

LockSupport

LockSupport定义了一组的公共静态方法,这些方法提供了最基本的线程阻塞和唤醒功能,而LockSupport也成为构建同步组件的基础工具。

LockSupport定义了一组以park开头的方法用来阻塞当前线程,以及unpark(Thread thread)方法来唤醒一个被阻塞的线程。Park有停车的意思,假设线程为车辆,那么park方法代表着停车,而unpark方法则是指车辆启动离开,方法如下:

image

在Java 6中,LockSupport增加了park(Object blocker)、parkNanos(Object blocker,long nanos) 和 parkUntil(Object blocker,long deadline)3个方法,用于实现阻塞当前线程的功能,其中参数 blocker 是用来标识当前线程在等待的对象(以下称为阻塞对象),该对象主要用于问题排查和系统监控。

Condition

简单介绍

任意一个Java对象,都拥有一组监视器方法(定义在java.lang.Object上),主要包括wait()、wait(long timeout)、notify()以及notifyAll()方法,这些方法与synchronized同步关键字配合,可以实现等待/通知模式。

Condition接口也提供了类似Object的监视器方法,与Lock配合可以实现等待/通知模式,但是这两者在使用方式以及功能特性上还是有差别的。

image

接口与实例

Condition定义了等待/通知两种类型的方法,当前线程调用这些方法时,需要提前获取到Condition对象关联的锁。Condition对象是由Lock对象(调用Lock对象的newCondition()方法)创建出来的,换句话说,Condition是依赖Lock对象的。

Condition的使用方式比较简单,需要注意在调用方法前获取锁:

Lock lock = new ReentrantLock();
Condition condition = lock.newCondition();
public void conditionWait() throws InterruptedException {
    lock.lock();
    try {
        condition.await();
    } finally {
        lock.unlock();
    }
}
public void conditionSignal() throws InterruptedException {
    lock.lock();
    try {
        condition.signal();
    } finally {
        lock.unlock();
    }
}

一般都会将Condition对象作为成员变量。当调用await()方法后,当前线程会释放锁并在此等待,而其他线程调用Condition对象的signal()方法,通知当前线程后,当前线程才从await()方法返回,并且在返回前已经获取了锁。

下面通过一个有界队列的示例来深入了解Condition的使用方式。有界队列是一种特殊的队列,当队列为空时,队列的获取操作将会阻塞获取线程,直到队列中有新增元素,当队列已满时,队列的插入操作将会阻塞插入线程,直到队列出现“空位”:

public class BoundedQueue<T> {

    private Object[] items;
    private int addIndex, removeIndex, count;
    private Lock lock = new ReentrantLock();
    private Condition notFull = lock.newCondition();
    private Condition notEmpty = lock.newCondition();

    public BoundedQueue(int length) {
        items = new Object[length];
    }

    public void add(T t) throws InterruptedException {
        lock.lock();
        try {
            while (count == items.length) {
                notFull.await();
            }
            items[addIndex] = t;
            if (++addIndex == items.length) {
                addIndex = 0;
            }
            count++;
            notEmpty.signal();
        } finally {
            lock.unlock();
        }
    }

    public T remove() throws InterruptedException {
        lock.lock();
        try {
            while (count == 0) {
                notEmpty.await();
            }
            Object x = items[removeIndex];
            if (++removeIndex == items.length) {
                removeIndex = 0;
            }
            count--;
            notFull.signal();
            return (T) x;
        } finally {
            lock.unlock();
        }
    }
}

在添加和删除方法中使用while循环而非if判断,目的是防止过早或意外的通知,只有条件符合才能够退出循环。

实现分析

ConditionObject是同步器AbstractQueuedSynchronizer的内部类,因为Condition的操作需要获取相关联的锁,所以作为同步器的内部类也较为合理。每个Condition对象都包含着一个队列(以下称为等待队列),该队列是Condition对象实现等待/通知功能的关键。

1. 等待队列

等待队列是一个FIFO的队列,在队列中的每个节点都包含了一个线程引用,该线程就是在Condition对象上等待的线程,如果一个线程调用了Condition.await()方法,那么该线程将会释放锁、构造成节点加入等待队列并进入等待状态。

一个Condition包含一个等待队列,Condition拥有首节点(firstWaiter)和尾节点(lastWaiter)。当前线程调用Condition.await()方法,将会以当前线程构造节点,并将节点从尾部加入等待队列,等待队列的基本结构如图:

image

如图所示,Condition拥有首尾节点的引用,而新增节点只需要将原有的尾节点nextWaiter 指向它,并且更新尾节点即可。上述节点引用更新的过程并没有使用CAS保证,原因在于调用 await()方法的线程必定是获取了锁的线程,也就是说该过程是由锁来保证线程安全的。

在Object的监视器模型上,一个对象拥有一个同步队列和等待队列,而并发包中的 Lock(更确切地说是同步器)拥有一个同步队列和多个等待队列,其对应关系如图所示:

image

如图所示,Condition的实现是同步器的内部类,因此每个Condition实例都能够访问同步器提供的方法,相当于每个Condition都拥有所属同步器的引用。

2. 等待

调用Condition的await()方法(或者以await开头的方法),会使当前线程进入等待队列并释放锁,同时线程状态变为等待状态。当从await()方法返回时,当前线程一定获取了Condition相关联的锁。

如果从队列(同步队列和等待队列)的角度看await()方法,当调用await()方法时,相当于同步队列的首节点(获取了锁的节点)移动到Condition的等待队列中。

Condition 的 await() 方法:

public final void await() throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    // 当前线程加入等待队列
    Node node = addConditionWaiter();
    // 释放同步状态,也就是释放锁
    int savedState = fullyRelease(node);
    int interruptMode = 0;
    while (!isOnSyncQueue(node)) {
        LockSupport.park(this);
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
    }
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    if (node.nextWaiter != null) // clean up if cancelled
        unlinkCancelledWaiters();
    if (interruptMode != 0)
        reportInterruptAfterWait(interruptMode);
}

调用该方法的线程成功获取了锁的线程,也就是同步队列中的首节点,该方法会将当前线程构造成节点并加入等待队列中,然后释放同步状态,唤醒同步队列中的后继节点,然后当前线程会进入等待状态。

当等待队列中的节点被唤醒,则唤醒节点的线程开始尝试获取同步状态。如果不是通过其他线程调用Condition.signal()方法唤醒,而是对等待线程进行中断,则会抛出 InterruptedException。

3. 通知

调用Condition的signal()方法,将会唤醒在等待队列中等待时间最长的节点(首节点),在唤醒节点之前,会将节点移到同步队列中。

image

Condition 的 signal() 方法:

public final void signal() {
    if (!isHeldExclusively())
        throw new IllegalMonitorStateException();
    Node first = firstWaiter;
    if (first != null)
        doSignal(first);
}

调用该方法的前置条件是当前线程必须获取了锁,可以看到signal()方法进行了isHeldExclusively()检查,也就是当前线程必须是获取了锁的线程。接着获取等待队列的首节点,将其移动到同步队列并使用LockSupport唤醒节点中的线程。

image

通过调用同步器的enq(Node node)方法,等待队列中的头节点线程安全地移动到同步队列。当节点移动到同步队列后,当前线程再使用LockSupport唤醒该节点的线程。

被唤醒后的线程,将从await()方法中的while循环中退出(isOnSyncQueue(Node node)方法返回true,节点已经在同步队列中),进而调用同步器的acquireQueued()方法加入到获取同步状态的竞争中。

成功获取同步状态(或者说锁)之后,被唤醒的线程将从先前调用的await()方法返回,此时该线程已经成功地获取了锁。

Condition的signalAll()方法,相当于对等待队列中的每个节点均执行一次signal()方法,效果就是将等待队列中所有节点全部移动到同步队列中,并唤醒每个节点的线程。


– 来自《Java并发编程的艺术》总结

猜你喜欢

转载自blog.csdn.net/u013283727/article/details/83547908