2019-2020-1 20199315《Linux内核原理与分析》第七周作业

实验楼实验六

分析Linux内核创建一个新进程的过程

阅读理解task_struct数据结构http://codelab.shiyanlou.com/xref/linux-3.18.6/include/linux/sched.h#1235;

  • 进程是计算机中已运行程序的实体。在面向线程设计的系统(Linux 2.6及更新的版本)中,进程本身不是基本运行单位,而是线程的容器。

  • 在Linux中,task_struct其实就是通常所说的PCB。该结构定义位于:

/include/linux/sched.h
  • 操作系统的三大功能:进程管理、内存管理和文件系统

  • 进程控制块PCB——task_struct

    • 进程在TASK_RUNNING下是可运行的,但它有没有运行取决于它有没有获得cpu的控制权,即这个进程有没有在CPU上实际的执行

    • 进程的标示pid

    • 程序创建的进程具有父子关系,在编程时往往需要引用这样的父子关系。进程描述符中有几个域用来表示这样的关系。

Linux内核状态转换图:

分析fork函数对应的内核处理过程sys_clone,理解创建一个新进程如何创建和修改task_struct数据结构;

1.Linux中创建进程一共有三个函数:

  • fork,创建子进程

  • vfork,与fork类似,但是父子进程共享地址空间,而且子进程先于父进程运行。

  • clone,主要用于创建线程

  • fork、vfork和clone三个系统调用都可以创建一个新进程,而且都是通过调用do_fork来实现进程的创建,do_fork完成了创建中的大部分工作,该函数调用copy_process()函数,然后让进程开始运行。

  • copy_process()函数工作如下:

    • 调用dup_task_struct()为新进程创建一个内核栈、thread_info结构和task_struct,这些值与当前进程的值相同

    • 检查

    • 子进程着手使自己与父进程区别开来。进程描述符内的许多成员被清0或设为初始值

    • 子进程状态被设为TASK_UNINTERRUPTIBLE,以保证它不会投入运行

    • copy_process()调用copy_flags()以更新task_struct的flags成员。表明进程是否拥有超级用户权限的PF_SUPERPRIV标志被清0。表明进程还没有调用exec()函数的PF_FORKNOEXEC标志被设置

    • 调用alloc_pid()为新进程分配一个有效的PID

    • 根据传递给clone()的参数标志,copy_process()拷贝或共享打开的文件、文件系统信息、信号处理函数、进程地址空间和命名空间等

    • 最后,copy_process()做扫尾工作并返回一个指向子进程的指针

2.进程创建过程

YSCALL_DEFINE0(fork)
{
    return do_fork(SIGCHLD, 0, 0, NULL, NULL);
}
#endif
 
SYSCALL_DEFINE0(vfork)
{
    return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
            0, NULL, NULL);
}
 
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
         int __user *, parent_tidptr,
         int __user *, child_tidptr,
         int, tls_val)
{
    return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
}

3.分析do_fork 代码

long do_fork(unsigned long clone_flags,
          unsigned long stack_start,
          unsigned long stack_size,
          int __user *parent_tidptr,
          int __user *child_tidptr)
{
    struct task_struct *p;
    int trace = 0;
    long nr;
 
    // ...
     
    // 复制进程描述符,返回创建的task_struct的指针
    p = copy_process(clone_flags, stack_start, stack_size,
             child_tidptr, NULL, trace);
 
    if (!IS_ERR(p)) {
        struct completion vfork;
        struct pid *pid;
 
        trace_sched_process_fork(current, p);
 
        // 取出task结构体内的pid
        pid = get_task_pid(p, PIDTYPE_PID);
        nr = pid_vnr(pid);
 
        if (clone_flags & CLONE_PARENT_SETTID)
            put_user(nr, parent_tidptr);
 
        // 如果使用的是vfork,那么必须采用某种完成机制,确保父进程后运行
        if (clone_flags & CLONE_VFORK) {
            p->vfork_done = &vfork;
            init_completion(&vfork);
            get_task_struct(p);
        }
 
        // 将子进程添加到调度器的队列,使得子进程有机会获得CPU
        wake_up_new_task(p);
 
        // ...
 
        // 如果设置了 CLONE_VFORK 则将父进程插入等待队列,并挂起父进程直到子进程释放自己的内存空间
        // 保证子进程优先于父进程运行
        if (clone_flags & CLONE_VFORK) {
            if (!wait_for_vfork_done(p, &vfork))
                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
        }
 
        put_pid(pid);
    } else {
        nr = PTR_ERR(p);
    }
    return nr;
}

4.do_fork的工作

  • 调用copy_process,将当期进程复制一份出来为子进程,并且为子进程设置相应地上下文信息。
  • 初始化vfork的完成处理信息(如果是vfork调用)
  • 调用wake_up_new_task,将子进程放入调度器的队列中,此时的子进程就可以被调度进程选中,得以运行。
  • 如果是vfork调用,需要阻塞父进程,知道子进程执行exec。

使用gdb跟踪分析一个fork系统调用内核处理函数sys_clone ,验证您对Linux系统创建一个新进程的理解,推荐在实验楼Linux虚拟机环境下完成实验。

更新menu代码到最新版,make rootfs编译:

用help查看,新添加fork命令:

进入gdb调试:

使用gdb跟踪调试内核,在一些重要函数处设置断点

开始n……

特别关注新进程是从哪里开始执行的?为什么从那里能顺利执行下去?即执行起点与内核堆栈如何保证一致。

  • ret_from_fork;决定了新进程的第一条指令地址。

  • 在ret_from_fork之前,也就是在copy_thread()函数中childregs = current_pt_regs();该句将父进程的regs参数赋值到子进程的内核堆栈

  • *childregs的类型为pt_regs,里面存放了SAVE ALL中压入栈的参数

  • 故在之后的RESTORE ALL中能顺利执行下去

遇到的问题

上周提及的连接超时问题,发现原因应该是错误地把被挂起的QEMU界面关闭了……

正确做法应该是:cd ..回LinuxKernel——分屏——终端1输入

qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd rootfs.img -s -S

——无需关闭图形界面,直接在终端2进入gdb

此为本人Linux学习第七周的内容,如有不足,还请批评指正,不胜感激。

以上

猜你喜欢

转载自www.cnblogs.com/qianxiaoxu/p/11785971.html