HashMap基础知识

HashMap 简介

HashMap 主要用来存放键值对,它基于哈希表的Map接口实现,是常用的Java集合之一。

JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的(“拉链法”解决冲突).JDK1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)时,将链表转化为红黑树,以减少搜索时间。

底层数据结构分析

JDK1.8之前

JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列。HashMap 通过 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突。

所谓扰动函数指的就是 HashMap 的 hash 方法。使用 hash 方法也就是扰动函数是为了防止一些实现比较差的 hashCode() 方法 换句话说使用扰动函数之后可以减少碰撞。

JDK 1.8 HashMap 的 hash 方法源码:

JDK 1.8 的 hash方法 相比于 JDK 1.7 hash 方法更加简化,但是原理不变。

    static final int hash(Object key) { int h; // key.hashCode():返回散列值也就是hashcode // ^ :按位异或 // >>>:无符号右移,忽略符号位,空位都以0补齐 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } 

对比一下 JDK1.7的 HashMap 的 hash 方法源码.

static int hash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } 

相比于 JDK1.8 的 hash 方法 ,JDK 1.7 的 hash 方法的性能会稍差一点点,因为毕竟扰动了 4 次。

所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

jdk1.8之前的内部结构

JDK1.8之后

相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。

JDK1.8之后的HashMap底层数据结构

类的属性:

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { // 序列号 private static final long serialVersionUID = 362498820763181265L; // 默认的初始容量是16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 最大容量 static final int MAXIMUM_CAPACITY = 1 << 30; // 默认的填充因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; // 当桶(bucket)上的结点数大于这个值时会转成红黑树 static final int TREEIFY_THRESHOLD = 8; // 当桶(bucket)上的结点数小于这个值时树转链表 static final int UNTREEIFY_THRESHOLD = 6; // 桶中结构转化为红黑树对应的table的最小大小 static final int MIN_TREEIFY_CAPACITY = 64; // 存储元素的数组,总是2的幂次倍 transient Node<k,v>[] table; // 存放具体元素的集 transient Set<map.entry<k,v>> entrySet; // 存放元素的个数,注意这个不等于数组的长度。 transient int size; // 每次扩容和更改map结构的计数器 transient int modCount; // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容 int threshold; // 填充因子 final float loadFactor; } 
  • loadFactor加载因子

    loadFactor加载因子是控制数组存放数据的疏密程度,loadFactor越趋近于1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,load Factor越小,也就是趋近于0,

    loadFactor太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor的默认值为0.75f是官方给出的一个比较好的临界值。

  • threshold

    threshold = capacity * loadFactor,当Size>=threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。

Node节点类源码:

// 继承自 Map.Entry<K,V>
static class Node<K,V> implements Map.Entry<K,V> { final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较 final K key;//键 V value;//// 指向下一个节点 Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } public final K getKey() { return key; } public final V getValue() { return value; } public final String toString() { return key + "=" + value; } // 重写hashCode()方法 public final int hashCode() { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } // 重写 equals() 方法 public final boolean equals(Object o) { if (o == this) return true; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true; } return false; } } 

树节点类源码:

static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { TreeNode<K,V> parent; // 父 TreeNode<K,V> left; // 左 TreeNode<K,V> right; // 右 TreeNode<K,V> prev; // needed to unlink next upon deletion boolean red; // 判断颜色 TreeNode(int hash, K key, V val, Node<K,V> next) { super(hash, key, val, next); } // 返回根节点 final TreeNode<K,V> root() { for (TreeNode<K,V> r = this, p;;) { if ((p = r.parent) == null) return r; r = p; } 

HashMap源码分析

构造方法

四个构造方法

    // 默认构造函数。
    public More ...HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } // 包含另一个“Map”的构造函数 public More ...HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false);//下面会分析到这个方法 } // 指定“容量大小”的构造函数 public More ...HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } // 指定“容量大小”和“加载因子”的构造函数 public More ...HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } 

putMapEntries方法:

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { int s = m.size(); if (s > 0) { // 判断table是否已经初始化 if (table == null) { // pre-size // 未初始化,s为m的实际元素个数 float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); // 计算得到的t大于阈值,则初始化阈值 if (t > threshold) threshold = tableSizeFor(t); } // 已初始化,并且m元素个数大于阈值,进行扩容处理 else if (s > threshold) resize(); // 将m中的所有元素添加至HashMapfor (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false, evict); } } } 

put方法

HashMap只提供了put用于添加元素,putVal方法只是给put方法调用的一个方法,并没有提供给用户使用。

对putVal方法添加元素的分析如下:

  • ①如果定位到的数组位置没有元素 就直接插入。
  • ②如果定位到的数组位置有元素就和要插入的key比较,如果key相同就直接覆盖,如果key不相同,就判断p是否是一个树节点,如果是就调用e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value)将元素添加进入。如果不是就遍历链表插入。

put方法

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; // table未初始化或者长度为0,进行扩容 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中) if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); // 桶中已经存在元素 else { Node<K,V> e; K k; // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) // 将第一个元素赋值给e,用e来记录 e = p; // hash值不相等,即key不相等;为红黑树结点 else if (p instanceof TreeNode) // 放入树中 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 为链表结点 else { // 在链表最末插入结点 for (int binCount = 0; ; ++binCount) { // 到达链表的尾部 if ((e = p.next) == null) { // 在尾部插入新结点 p.next = newNode(hash, key, value, null); // 结点数量达到阈值,转化为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); // 跳出循环 break; } // 判断链表中结点的key值与插入的元素的key值是否相等 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) // 相等,跳出循环 break; // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表 p = e; } } // 表示在桶中找到key值、hash值与插入元素相等的结点 if (e != null) { // 记录e的value V oldValue = e.value; // onlyIfAbsent为false或者旧值为null if (!onlyIfAbsent || oldValue == null) //用新值替换旧值 e.value = value; // 访问后回调 afterNodeAccess(e); // 返回旧值 return oldValue; } } // 结构性修改 ++modCount; // 实际大小大于阈值则扩容 if (++size > threshold) resize(); // 插入后回调 afterNodeInsertion(evict); return null; } 

我们再来对比一下 JDK1.7 put方法的代码

对于put方法的分析如下:

  • ①如果定位到的数组位置没有元素 就直接插入。
  • ②如果定位到的数组位置有元素,遍历以这个元素为头结点的链表,依次和插入的key比较,如果key相同就直接覆盖,不同就采用头插法插入元素。
public V put(K key, V value)
    if (table == EMPTY_TABLE) { inflateTable(threshold); } if (key == null) return putForNullKey(value); int hash = hash(key); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { // 先遍历 Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } modCount++; addEntry(hash, key, value, i); // 再插入 return null; } 

get方法

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 数组元素相等 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 桶中不止一个节点 if ((e = first.next) != null) { // 在树中get if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 在链表中get do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } 

resize方法

进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { // 超过最大值就不再扩充了,就只好随你碰撞去吧 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 没超过最大值,就扩充为原来的2else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 计算新的resize上限 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { // 把每个bucket都移动到新的bucketsfor (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; // 原索引 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } // 原索引+oldCap else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); // 原索引放到bucketif (loTail != null) { loTail.next = null; newTab[j] = loHead; } // 原索引+oldCap放到bucketif (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } 

HashMap常用方法测试

package map;

import java.util.Collection;
import java.util.HashMap;
import java.util.Set;

public class HashMapDemo { public static void main(String[] args) { HashMap<String, String> map = new HashMap<String, String>(); // 键不能重复,值可以重复 map.put("san", "张三"); map.put("si", "李四"); map.put("wu", "王五"); map.put("wang", "老王"); map.put("wang", "老王2");// 老王被覆盖 map.put("lao", "老王"); System.out.println("-------直接输出hashmap:-------"); System.out.println(map); /** * 遍历HashMap */ // 1.获取Map中的所有键 System.out.println("-------foreach获取Map中所有的键:------"); Set<String> keys = map.keySet(); for (String key : keys) { System.out.print(key+" "); } System.out.println();//换行 // 2.获取Map中所有值 System.out.println("-------foreach获取Map中所有的值:------"); Collection<String> values = map.values(); for (String value : values) { System.out.print(value+" "); } System.out.println();//换行 // 3.得到key的值的同时得到key所对应的值 System.out.println("-------得到key的值的同时得到key所对应的值:-------"); Set<String> keys2 = map.keySet(); for (String key : keys2) { System.out.print(key + ":" + map.get(key)+" "); } /** * 另外一种不常用的遍历方式 */ // 当我调用put(key,value)方法的时候,首先会把key和value封装到 // Entry这个静态内部类对象中,把Entry对象再添加到数组中,所以我们想获取 // map中的所有键值对,我们只要获取数组中的所有Entry对象,接下来 // 调用Entry对象中的getKey()和getValue()方法就能获取键值对了 Set<java.util.Map.Entry<String, String>> entrys = map.entrySet(); for (java.util.Map.Entry<String, String> entry : entrys) { System.out.println(entry.getKey() + "--" + entry.getValue()); } /** * HashMap其他常用方法 */ System.out.println("after map.size():"+map.size()); System.out.println("after map.isEmpty():"+map.isEmpty()); System.out.println(map.remove("san")); System.out.println("after map.remove():"+map); System.out.println("after map.get(si):"+map.get("si")); System.out.println("after map.containsKey(si):"+map.containsKey("si")); System.out.println("after containsValue(李四):"+map.containsValue("李四")); System.out.println(map.replace("si", "李四2")); System.out.println("after map.replace(si, 李四2):"+map); } } 

 

猜你喜欢

转载自www.cnblogs.com/joker955/p/11738444.html
今日推荐