(五)多线程------Java并发包

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/qq_42292373/article/details/102713500

什么是线程安全问题?

保证在多个线程之间共享同个全部变量或静态变量,保证数据的一致性和原子性。

ConcurrentMap解析

ConcurrentMap接口下有俩个重要的实现 :
ConcurrentHashMap
ConcurrentskipListMap (支持并发排序功能。弥补ConcurrentHas hMa p)

ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个
小的HashTable,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并
发进行。把一个整体分成了16个段(Segment.也就是最高支持16个线程的并发修改操作。
这样的话,当多个线程进行add添加的时候,此时他添加的可能是其他的Segment,相当于
Segment把同步访问的压力进行了分散,从而实现实现对并发问题的优化速度解决

CountDownLatch

CountDownLatch类位于jdk1.5 java.util.concurrent包下,利用它可以实现类似计数器的功能。
比如有一个任务A,它要等待其他4个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。

java代码演示

public class Test002 {

	public static void main(String[] args) throws InterruptedException {
		System.out.println("等待子线程执行完毕...");
		CountDownLatch countDownLatch = new CountDownLatch(2);
		new Thread(new Runnable() {

			@Override
			public void run() {
				System.out.println("子线程," + Thread.currentThread().getName() + "开始执行...");
				countDownLatch.countDown();// 每次减去1
				System.out.println("子线程," + Thread.currentThread().getName() + "结束执行...");
			}
		}).start();
		new Thread(new Runnable() {

			@Override
			public void run() {
				System.out.println("子线程," + Thread.currentThread().getName() + "开始执行...");
				countDownLatch.countDown();
				System.out.println("子线程," + Thread.currentThread().getName() + "结束执行...");
			}
		}).start();

		countDownLatch.await();// 调用当前方法主线程阻塞  countDown结果为0, 阻塞变为运行状态
		System.out.println("两个子线程执行完毕....");
		System.out.println("继续主线程执行..");
	}

}

CyclicBarrier

   CyclicBarrier初始化时规定一个数目,然后计算调用了CyclicBarrier.await()进入等待的线程数。
   当线程数达到了这个数目时,所有进入等待状态的线程被唤醒并继续。 
   CyclicBarrier就象它名字的意思一样,可看成是个障碍, 所有的线程必须到齐后才能一起通过这个障碍。 
   CyclicBarrier初始时还可带一个Runnable的参数, 此Runnable任务在CyclicBarrier的数目达到后,所有其它线程被唤醒前被执行。
class Writer extends Thread {
	private CyclicBarrier cyclicBarrier;
	public Writer(CyclicBarrier cyclicBarrier){
		 this.cyclicBarrier=cyclicBarrier;
	}
	@Override
	public void run() {
		System.out.println("线程" + Thread.currentThread().getName() + ",正在写入数据");
		try {
			Thread.sleep(3000);
		} catch (Exception e) {
			// TODO: handle exception
		}
		System.out.println("线程" + Thread.currentThread().getName() + ",写入数据成功.....");
		
		try {
			cyclicBarrier.await();
		} catch (Exception e) {
		}
		System.out.println("所有线程执行完毕..........");
	}

}

public class Test001 {

	public static void main(String[] args) {
		CyclicBarrier cyclicBarrier=new CyclicBarrier(5);
		for (int i = 0; i < 5; i++) {
			Writer writer = new Writer(cyclicBarrier);
			writer.start();
		}
	}

}


Semaphore

Semaphore是一种基于计数的信号量。它可以设定一个阈值,基于此,多个线程竞争获取许可信号,
做自己的申请后归还,超过阈值后,线程申请许可信号将会被阻塞。Semaphore可以用来构建一些对象池,
资源池之类的,比如数据库连接池,我们也可以创建计数为1的Semaphore,将其作为一种类似互斥锁的机制,
这也叫二元信号量,表示两种互斥状态。它的用法如下:
availablePermits函数用来获取当前可用的资源数量
wc.acquire(); //申请资源
wc.release();// 释放资源
**加粗样式**```
**基础的核心模板**

```sql
	// 创建一个计数阈值为5的信号量对象  
    	// 只能5个线程同时访问  
    	Semaphore semp = new Semaphore(5);  
    	  
    	try {  
    	    // 申请许可  
    	    semp.acquire();  
    	    try {  
    	        // 业务逻辑  
    	    } catch (Exception e) {  
    	  
    	    } finally {  
    	        // 释放许可  
    	        semp.release();  
    	    }  
    	} catch (InterruptedException e) {  
    	  
    	}  

案例

需求: 一个厕所只有3个坑位,但是有10个人来上厕所,那怎么办?
假设10的人的编号分别为1-10,并且1号先到厕所,10号最后到厕所。
那么1-3号来的时候必然有可用坑位,顺利如厕,4号来的时候需要看看前面3人是否有人出来了,
如果有人出来,进去,否则等待。同样的道理,4-10号也需要等待正在上厕所的人出来后才能进去,
并且谁先进去这得看等待的人是否有素质,是否能遵守先来先上的规则。
class Parent implements Runnable {
	private String name;
	private Semaphore wc;
	public Parent(String name,Semaphore wc){
		this.name=name;
		this.wc=wc;
	}
	@Override
	public void run() {
		try {
			// 剩下的资源(剩下的茅坑)
			int availablePermits = wc.availablePermits();
			if (availablePermits > 0) {
				System.out.println(name+"天助我也,终于有茅坑了...");
			} else {
				System.out.println(name+"怎么没有茅坑了...");
			}
			//申请茅坑 如果资源达到3次,就等待
			wc.acquire();
			System.out.println(name+"终于轮我上厕所了..爽啊");
			   Thread.sleep(new Random().nextInt(1000)); // 模拟上厕所时间。
			System.out.println(name+"厕所上完了...");
		
			
		} catch (Exception e) {
	        wc.release();
		}
	}
}
public class TestSemaphore02 {
	public static void main(String[] args) {
		// 一个厕所只有3个坑位,但是有10个人来上厕所,那怎么办?假设10的人的编号分别为1-10,并且1号先到厕所,10号最后到厕所。那么1-3号来的时候必然有可用坑位,顺利如厕,4号来的时候需要看看前面3人是否有人出来了,如果有人出来,进去,否则等待。同样的道理,4-10号也需要等待正在上厕所的人出来后才能进去,并且谁先进去这得看等待的人是否有素质,是否能遵守先来先上的规则。
         Semaphore semaphore = new Semaphore(3);
		for (int i = 1; i <=10; i++) {
			 Parent parent = new Parent("第"+i+"个人,",semaphore);
			 new Thread(parent).start();
		}
	}
}


并发队列

在并发队列上JDK提供了两套实现,一个是以ConcurrentLinkedQueue为代表的高性能队
列,一个是以BlockingQueue接口为代表的阻塞队列,无论哪种都继承自Queue。
阻塞队列最大的特点是
生产者写满的时候,会进入到阻塞。
当队列为空的时候,消费者者也会等待

在这里插入图片描述

ConcurrentLinkedQueue

ConcurrentLinkedQueue : 是一个适用于高并发场景下的队列,通过无锁的方式,实现
了高并发状态下的高性能,通常ConcurrentLinkedQueue性能好于BlockingQueue.它
是一个基于链接节点的无界线程安全队列。该队列的元素遵循先进先出的原则。头是最先
加入的,尾是最近加入的,该队列不允许null元素。
ConcurrentLinkedQueue重要方法:
add 和offer() 都是加入元素的方法(在ConcurrentLinkedQueue中这俩个方法没有任何区别)
poll() 和peek() 都是取头元素节点,区别在于前者会删除元素,后者不会。

代码

	ConcurrentLinkedDeque q = new ConcurrentLinkedDeque();
	q.offer("马化腾");
	q.offer("码云");
	q.offer("腾讯课堂");
	q.offer("张杰");
	q.offer("艾姐");
	//从头获取元素,删除该元素
	System.out.println(q.poll());
	//从头获取元素,不刪除该元素
	System.out.println(q.peek());
	//获取总长度
	System.out.println(q.size());

BlockingQueue

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:
在队列为空时,获取元素的线程会等待队列变为非空。
当队列满时,存储元素的线程会等待队列可用。 
阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。
阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。


在Java中,BlockingQueue的接口位于java.util.concurrent 包中(在Java5版本开始提供),由上面介绍的阻塞队列的特性可知,阻塞队列是线程安全的。
在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输”数据的问题。通过这些高效并且线程安全的队列类,为我们快速搭建高质量的多线程程序带来极大的便利。本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景。
认识BlockingQueue
阻塞队列,顾名思义,首先它是一个队列,而一个队列在数据结构中所起的作用大致如下图所示:
从上图我们可以很清楚看到,通过一个共享的队列,可以使得数据由队列的一端输入,从另外一端输出;
常用的队列主要有以下两种:(当然通过不同的实现方式,还可以延伸出很多不同类型的队列,DelayQueue就是其中的一种)
  先进先出(FIFO):先插入的队列的元素也最先出队列,类似于排队的功能。从某种程度上来说这种队列也体现了一种公平性。
  后进先出(LIFO):后插入队列的元素最先出队列,这种队列优先处理最近发生的事件。
      多线程环境中,通过队列可以很容易实现数据共享,比如经典的“生产者”和“消费者”模型中,通过队列可以很便利地实现两者之间的数据共享。假设我们有若干生产者线程,另外又有若干个消费者线程。如果生产者线程需要把准备好的数据共享给消费者线程,利用队列的方式来传递数据,就可以很方便地解决他们之间的数据共享问题。但如果生产者和消费者在某个时间段内,万一发生数据处理速度不匹配的情况呢?理想情况下,如果生产者产出数据的速度大于消费者消费的速度,并且当生产出来的数据累积到一定程度的时候,那么生产者必须暂停等待一下(阻塞生产者线程),以便等待消费者线程把累积的数据处理完毕,反之亦然。然而,在concurrent包发布以前,在多线程环境下,我们每个程序员都必须去自己控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。好在此时,强大的concurrent包横空出世了,而他也给我们带来了强大的BlockingQueue。(在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤醒)
下面两幅图演示了BlockingQueue的两个常见阻塞场景:

ArrayBlockingQueue

ArrayBlockingQueue是一个有边界的阻塞队列,它的内部实现是一个数组。有边界的意思是它的容量是有限的,我们必须在其初始化的时候指定它的容量大小,容量大小一旦指定就不可改变。
ArrayBlockingQueue是以先进先出的方式存储数据,最新插入的对象是尾部,最新移出的对象是头部。下面
是一个初始化和使用ArrayBlockingQueue的例子:

代码

	ArrayBlockingQueue<String> arrays = new ArrayBlockingQueue<String>(3);
	arrays.add("李四");
	 arrays.add("张军");
	arrays.add("张军");
	// 添加阻塞队列
	arrays.offer("张三", 1, TimeUnit.SECONDS);

LinkedBlockingQueue

LinkedBlockingQueue阻塞队列大小的配置是可选的,如果我们初始化时指定一个大小,它就是有边界的,如果不指定,它就是无边界的。说是无边界,其实是采用了默认大小为Integer.MAX_VALUE的容量 。它的内部实现是一个链表。
和ArrayBlockingQueue一样,LinkedBlockingQueue 也是以先进先出的方式存储数据,最新插入的对象是尾部,最新移出的对象是头部。下面是一个初始化和使LinkedBlockingQueue的例子:

代码

LinkedBlockingQueue linkedBlockingQueue = new LinkedBlockingQueue(3);
linkedBlockingQueue.add("张三");
linkedBlockingQueue.add("李四");
linkedBlockingQueue.add("李四");
System.out.println(linkedBlockingQueue.size());

PriorityBlockingQueue

PriorityBlockingQueue是一个没有边界的队列,它的排序规则和 java.util.PriorityQueue一样。需要注 
意,PriorityBlockingQueue中允许插入null对象。
所有插入PriorityBlockingQueue的对象必须实现 java.lang.Comparable接口,队列优先级的排序规则就 
是按照我们对这个接口的实现来定义的。
另外,我们可以从PriorityBlockingQueue获得一个迭代器Iterator,但这个迭代器并不保证按照优先级顺 
序进行迭代。
下面我们举个例子来说明一下,首先我们定义一个对象类型,这个对象需要实现Comparable接口:

SynchronousQueue

队列内部仅允许容纳一个元素。当一个线程插入一个元素后会被阻塞,除非这个元素被另一个线程消费。

使用BlockingQueue模拟生产者与消费者

代码

class ProducerThread implements Runnable {
	private BlockingQueue queue;
	private volatile boolean flag = true;
	private static AtomicInteger count = new AtomicInteger();
	public ProducerThread(BlockingQueue queue) {
		this.queue = queue;
	}

	@Override
	public void run() {
		try {
			System.out.println("生产线程启动...");
			while (flag) {
				System.out.println("正在生产数据....");
				String = count.incrementAndGet()+"";
				// 将数据存入队列中
				boolean offer = queue.offer(data, 2, TimeUnit.SECONDS);
				if (offer) {
					System.out.println("生产者,存入" + data + "到队列中,成功.");
				} else {
					System.out.println("生产者,存入" + data + "到队列中,失败.");
				}
				Thread.sleep(1000);
			}
		} catch (Exception e) {

		} finally {
			System.out.println("生产者退出线程");
		}

	}

	public void stop() {
		this.flag = false;
	}
}

class ConsumerThread implements Runnable {
	private BlockingQueue<String> queue;
	private volatile boolean flag = true;

	public ConsumerThread(BlockingQueue<String> queue) {
		this.queue = queue;

	}

	@Override
	public void run() {
		System.out.println("消费线程启动...");
		try {
			while (flag) {
				System.out.println("消费者,正在从队列中获取数据..");
				String data = queue.poll(2, TimeUnit.SECONDS);
				if (data != null) {
					System.out.println("消费者,拿到队列中的数据data:" + data);
					Thread.sleep(1000);
				} else {
					System.out.println("消费者,超过2秒未获取到数据..");
					flag = false;
				}
		
				
			}
		} catch (Exception e) {
               e.printStackTrace();
		} finally {
			System.out.println("消费者退出线程...");
		}
		
	}

}

public class ProducerAndConsumer {
	public static void main(String[] args) throws InterruptedException {
		BlockingQueue<String> queue = new LinkedBlockingQueue<String>(10);
		ProducerThread producerThread1 = new ProducerThread(queue);
		ProducerThread producerThread2 = new ProducerThread(queue);
		ConsumerThread consumerThread1 = new ConsumerThread(queue);
        Thread t1 = new Thread(producerThread1);
        Thread t2 = new Thread(producerThread2);
        Thread c1 = new Thread(consumerThread1);
        t1.start();
        t2.start();
        c1.start();

        // 执行10s
        Thread.sleep(10 * 1000);
        producerThread1.stop();
        producerThread2.stop();
   
	}
}


猜你喜欢

转载自blog.csdn.net/qq_42292373/article/details/102713500