Paper慢慢读 - Learning Triggers for Heterogeneous Treatment Effects

这篇论文是在 Recursive Partitioning for Heterogeneous Casual Effects 的基础上加入了两个新元素:

  • Trigger:对不同群体的treatment选择个性化阈值。 E.g优惠券力度,红包金额
  • 新的Node Penalty: 旨在增强模型generalization

论文

C. Tran and E. Zheleva, “Learning triggers for heterogeneous treatment effects,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2019

模型

Trigger

Trigger的计算主要用在treatment是一个潜在连续变量,例如服药的剂量,优惠券的金额等等。这时实验希望得到的不仅是优惠券是否能提升用户留存,而且是对哪些用户使用多少金额的优惠券能最大化ROI。
作者在通过树划分用户群的同时计算能够使该用户群CATE最大化的Trigger阈值。既在遍历所有特征可能取值的同时遍历所有treatment的可能取值,取jointly的最优解。如下
\[ \begin{align} T = {t_i}&\quad \text{treatment的所有可能取值}\\ \theta_l &\quad \text{最优treatment阈值}\\ F^t(S_l) &= max_{\theta_l}F(S_l)\\ \end{align} \]

小思考
感觉这里对最佳trigger的选择还有优化的空间。因为上述split假定了实验效果对treatment的取值是单调的,如果不单调上述split可能得到不make sense的结果。而且在一些应用场景下是希望取到有条件最优解,例如在成本不超过N的情况下收益越高越好,而不是简单的最大化实验效果,这个当前也还无法解决。

Node Penalty

在Athey(2016)的Casual Tree中,作者通过在Cost Functino中加入叶节点方差,以及用验证集估计CATE的方式来解决决策树过拟合的问题。这里Tran提出的新的penalty旨在衡量相同节点训练集和验证机在CATE估计上的差异。

我们先回顾一下要用到的Notation
\[ \begin{align} & {(X_i, Y_i,T_i): X_i \in X} \\ & \text{where X是特征,Y是Response,T是AB实验分组}\\ &T_i \in {0,1} \quad \\ &Y_i = \begin{cases} Y(1) & \quad T_i = 0\\ Y(0) & \quad T_i = 1\\ \end{cases}\\ &CATE: \tau(x) = E(Y_i(1)-Y_i(0)|X=x)\\ \end{align} \]
以下是Athey(2016) Casual Tree的定义
\[ \begin{align} &S_l = {(X_i, Y_i,T_i): X_i \in X_l} \quad \text{叶节点-局部样本}\\ &\hat{\mu_t}(S_l) = \frac{1}{N_{l,t}}\sum_{T_i=t, i \in S_l}Y_i \quad \text{AB组Y的均值} \\ &\hat{\tau}(S_l) = \hat{\mu_1}(S_l) -\hat{\mu_0}(S_l) \quad \text{叶节点CATE}\\ &F(S_l) = N_l * \hat{\tau}^2(S_l)\\ & \text{cost fucntion}: max \sum_{i=1}^L F(S_i)\\ \end{align} \]

作者先把全样本切分成train, val和test。 用训练集来建树, 用test来估计叶节点variance,penalize小的叶结点带来的高方差,然后用叶节点上train和val的差异来penalize损失函数,以下\(\lambda\)控制penalty的大小:
\[ \begin{align} &penalty = N_L^{val} * |\hat{\tau}(S_l^{val}) -\hat{\tau}(S_l^{train}) | \\ &cost = \frac{(1-\lambda)F(S_l^{train}) - \lambda * penalty}{|N_l^{train} - N_l^{val}| +1}\\ \end{align} \]

小思考
各式各样解决over-fitting的方法不能说没有用,但个人认为最终通过Casual Tree得到的特征和特征取值,还是要依据业务逻辑来进行验证。以及在不同的样本集上很可能特征取值的变动要超过over-fitting的影响。所以主观判断在这里也很重要

其他相关模型详见因果推理的春天-实用HTE论文GitHub收藏

欢迎留言~

猜你喜欢

转载自www.cnblogs.com/gogoSandy/p/11718313.html