TensorFlow使用记录 (八): 梯度修剪

梯度修剪主要避免训练梯度爆炸的问题,一般来说使用了 Batch Normalization 就不必要使用梯度修剪了,但还是有必要理解下实现的

In TensorFlow, the optimizer’s minimize() function takes care of both computing the gradients and applying them, so you must instead call the optimizer’s compute_gradients() method first, then create an operation to clip the gradients using the clip_by_value() function, and finally create an operation to apply the clipped gradients using the optimizer’s apply_gradients() method:

threshold = 1.0
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
grads_and_vars = optimizer.compute_gradients(loss)
capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var)
         for grad, var in grads_and_vars]
training_op = optimizer.apply_gradients(capped_gvs)

例子

import tensorflow as tf

def Swish(features):
    return features*tf.nn.sigmoid(features)

# 1. create data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('../MNIST_data', one_hot=True)

X = tf.placeholder(tf.float32, shape=(None, 784), name='X')
y = tf.placeholder(tf.int32, shape=(None), name='y')
is_training = tf.placeholder(tf.bool, None, name='is_training')

# 2. define network
he_init = tf.contrib.layers.variance_scaling_initializer()
with tf.name_scope('dnn'):
    hidden1 = tf.layers.dense(X, 300, kernel_initializer=he_init, name='hidden1')
    # hidden1 = tf.layers.batch_normalization(hidden1, momentum=0.9)
    hidden1 = tf.nn.relu(hidden1)
    hidden2 = tf.layers.dense(hidden1, 100, kernel_initializer=he_init, name='hidden2')
    # hidden2 = tf.layers.batch_normalization(hidden2, training=is_training, momentum=0.9)
    hidden2 = tf.nn.relu(hidden2)
    logits = tf.layers.dense(hidden2, 10, kernel_initializer=he_init, name='output')
    # prob = tf.layers.dense(hidden2, 10, tf.nn.softmax, name='prob')

# 3. define loss
with tf.name_scope('loss'):
    # tf.losses.sparse_softmax_cross_entropy() label is not one_hot and dtype is int*
    # xentropy = tf.losses.sparse_softmax_cross_entropy(labels=tf.argmax(y, axis=1), logits=logits)
    # tf.nn.sparse_softmax_cross_entropy_with_logits() label is not one_hot and dtype is int*
    # xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y, axis=1), logits=logits)
    # loss = tf.reduce_mean(xentropy)
    loss = tf.losses.softmax_cross_entropy(onehot_labels=y, logits=logits) # label is one_hot

# 4. define optimizer
learning_rate = 0.01
with tf.name_scope('train'):
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)  # for batch normalization
    with tf.control_dependencies(update_ops):
        # optimizer_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
        threshold = 1.0
        optimizer = tf.train.GradientDescentOptimizer(learning_rate)
        grads_and_vars = optimizer.compute_gradients(loss)
        capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var)
                      for grad, var in grads_and_vars]
        optimizer_op = optimizer.apply_gradients(capped_gvs)



with tf.name_scope('eval'):
    correct = tf.nn.in_top_k(logits, tf.argmax(y, axis=1), 1) # 目标是否在前K个预测中, label's dtype is int*
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

# 5. initialize
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
saver = tf.train.Saver()
# =================
print([v.name for v in tf.trainable_variables()])
print([v.name for v in tf.global_variables()])
# =================
# 5. train & test
n_epochs = 20
n_batches = 50
batch_size = 50

with tf.Session() as sess:
    sess.run(init_op)
    for epoch in range(n_epochs):
        for iteration in range(mnist.train.num_examples // batch_size):
            X_batch, y_batch = mnist.train.next_batch(batch_size)
            sess.run(optimizer_op, feed_dict={X: X_batch, y: y_batch, is_training:True})
            # =================
            # for grad, var in grads_and_vars:
            #     grad = grad.eval(feed_dict={X: X_batch, y: y_batch, is_training:True})
            #     var = var.eval()
            # =================
        acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch, is_training:False}) # 最后一个 batch 的 accuracy
        acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False})
        loss_test = loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test, "Test loss:", loss_test)
    save_path = saver.save(sess, "./my_model_final.ckpt")

with tf.Session() as sess:
    sess.run(init_op)
    saver.restore(sess, "./my_model_final.ckpt")
    acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False})
    loss_test = loss.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels, is_training:False})
    print("Test accuracy:", acc_test, ", Test loss:", loss_test)
View Code

下面我们来看看上面这个例子里所涉及的一些东西

compute_gradients

compute_gradients 是任何一个优化器都有的方法:

compute_gradients(
    loss,
    var_list=None,
    gate_gradients=GATE_OP,
    aggregation_method=None,
    colocate_gradients_with_ops=False,
    grad_loss=None
)

计算 loss 中可训练的 var_list 中的梯度。
相当于minimize() 的第一步,返回 (gradient, variable) 列表。

获得了梯度后我们就可以手动进行梯度裁剪了,下面这句话就是将梯度限制到 [-threshold, threshold] 的范围内:

capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var)
                      for grad, var in grads_and_vars]

apply_gradients

apply_gradients 同样是任何一个优化器都有的方法:

apply_gradients(
    grads_and_vars,
    global_step=None,
    name=None
)

minimize() 的第二部分,返回一个执行梯度更新的 ops。

猜你喜欢

转载自www.cnblogs.com/xuanyuyt/p/11652556.html