语音笔记:CTC

1.介绍

  CTC全称,Connectionist temporal classification,可以理解为基于神经网络的时序类分类。语音识别中声学模型的训练属于监督学习,需要知道每一帧对应的label才能进行有效的训练,在训练的数据准备阶段必须要对语音进行强制对齐。对于语音的一帧数据,很难给出一个label,但是几十帧数据就容易判断出对应的发音label。CTC的引入可以放宽了这种逐一对应的要求,只需要一个输入序列和一个输出序列即可以训练。有两点好处:不需要对数据对齐和一一标注;CTC直接输出序列预测的概率,不需要外部的后处理。

  在端到端的语音识别中有以下问题:

    1).输入语音序列和标签(即文字结果)的长度不一致
    2).标签和输入序列的位置是不确定的(对齐问题)

  长度问题对齐问题,多个输入帧对应一个输出或者一个输入对多个输出。

2.结构

  系统可以通过双向rnn进行建模。RNN用来训练得到每个时刻不同音素的概率分布。
  输入:按时序输入的每一帧的特征。
  输出:每一个时刻的输出,是一个softmax,表示K+1个类别的不同概率,K表示音素的个数,1表示blank。(分类问题,是某个音素or空白)

  对于给定时序长度为T的输入特征序列和任意一个输出标签序列π={π1,π2,π3,….,πT}。输出为该序列的概率为每个时刻相应标签的概率乘积:

   把上式中的pr概率写成y,就变为论文中的原始公式(y表示softmax输出的概率):

3.损失函数 

  因为输出序列和最后的训练标签一般不等长,我们用x表示输入序列,y表示对于的标签,a表示我们之前预测的序列:采用一个many-to-one的对应准则β(去除blank和重复),使上述的输出序列与给定的标签序列对应,比如(a,-,b,c,-,-)和(-,-,a,-,b,c)都映射成标签y(a,b,c)。

  \beta ^{-1}表示β的逆过程,即one-to-many,也就是把(a,b,c)映射成有重复和blank的所有可能,所以最终的标签y为给定输入序列x在LSTM模型下各个序列标签的概率之和:

 

  所以给定一个输入序列x和一个标注l*,LSTM的目标函数最大化上述概率值(最小化负对数)。

猜你喜欢

转载自www.cnblogs.com/apak/p/8950318.html
CTC