kaggle house price

kaggle 竞赛入门

  • 对于刚刚入门机器学习的的同学来说,kaggle竞赛通常是他们学习和跟其他的全世界范围内的参赛选手切磋的一个大的平台,这个平台上提供了一些入门的竞赛,可以供刚入门的同学一展拳脚

  • 本文针对房价预测的这个竞赛展开,从EDA,特征工程,到模型调参开始讲述一些竞赛中的小的trick,希望对大家有些帮助,本人基础一般,如果有贻笑大方的地方,可以随意拍砖

from IPython.display import HTML
from IPython.display import Image

HTML('''<script>
code_show=true; 
function code_toggle() {
 if (code_show){
 $('div.input').hide();
 } else {
 $('div.input').show();
 }
 code_show = !code_show
} 
$( document ).ready(code_toggle);
</script>
<form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>''')

导入常用的数据分析以及模型的库

import pandas as pd
import numpy as np
  • 查看当前目录下的文件可以使用!ls
!ls
data_description.txt
data_description.zip
kaggle house price.ipynb
sample_submission.csv
stacking-house-prices-walkthrough-to-top-5.ipynb
test.csv
train.csv
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
train.head()
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 1 60 RL 65.0 8450 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 208500
1 2 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 5 2007 WD Normal 181500
2 3 60 RL 68.0 11250 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 9 2008 WD Normal 223500
3 4 70 RL 60.0 9550 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 2 2006 WD Abnorml 140000
4 5 60 RL 84.0 14260 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 12 2008 WD Normal 250000

5 rows × 81 columns

train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
Id               1460 non-null int64
MSSubClass       1460 non-null int64
MSZoning         1460 non-null object
LotFrontage      1201 non-null float64
LotArea          1460 non-null int64
Street           1460 non-null object
Alley            91 non-null object
LotShape         1460 non-null object
LandContour      1460 non-null object
Utilities        1460 non-null object
LotConfig        1460 non-null object
LandSlope        1460 non-null object
Neighborhood     1460 non-null object
Condition1       1460 non-null object
Condition2       1460 non-null object
BldgType         1460 non-null object
HouseStyle       1460 non-null object
OverallQual      1460 non-null int64
OverallCond      1460 non-null int64
YearBuilt        1460 non-null int64
YearRemodAdd     1460 non-null int64
RoofStyle        1460 non-null object
RoofMatl         1460 non-null object
Exterior1st      1460 non-null object
Exterior2nd      1460 non-null object
MasVnrType       1452 non-null object
MasVnrArea       1452 non-null float64
ExterQual        1460 non-null object
ExterCond        1460 non-null object
Foundation       1460 non-null object
BsmtQual         1423 non-null object
BsmtCond         1423 non-null object
BsmtExposure     1422 non-null object
BsmtFinType1     1423 non-null object
BsmtFinSF1       1460 non-null int64
BsmtFinType2     1422 non-null object
BsmtFinSF2       1460 non-null int64
BsmtUnfSF        1460 non-null int64
TotalBsmtSF      1460 non-null int64
Heating          1460 non-null object
HeatingQC        1460 non-null object
CentralAir       1460 non-null object
Electrical       1459 non-null object
1stFlrSF         1460 non-null int64
2ndFlrSF         1460 non-null int64
LowQualFinSF     1460 non-null int64
GrLivArea        1460 non-null int64
BsmtFullBath     1460 non-null int64
BsmtHalfBath     1460 non-null int64
FullBath         1460 non-null int64
HalfBath         1460 non-null int64
BedroomAbvGr     1460 non-null int64
KitchenAbvGr     1460 non-null int64
KitchenQual      1460 non-null object
TotRmsAbvGrd     1460 non-null int64
Functional       1460 non-null object
Fireplaces       1460 non-null int64
FireplaceQu      770 non-null object
GarageType       1379 non-null object
GarageYrBlt      1379 non-null float64
GarageFinish     1379 non-null object
GarageCars       1460 non-null int64
GarageArea       1460 non-null int64
GarageQual       1379 non-null object
GarageCond       1379 non-null object
PavedDrive       1460 non-null object
WoodDeckSF       1460 non-null int64
OpenPorchSF      1460 non-null int64
EnclosedPorch    1460 non-null int64
3SsnPorch        1460 non-null int64
ScreenPorch      1460 non-null int64
PoolArea         1460 non-null int64
PoolQC           7 non-null object
Fence            281 non-null object
MiscFeature      54 non-null object
MiscVal          1460 non-null int64
MoSold           1460 non-null int64
YrSold           1460 non-null int64
SaleType         1460 non-null object
SaleCondition    1460 non-null object
SalePrice        1460 non-null int64
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
print(train.shape)
print(test.shape)
(1460, 81)
(1459, 80)
  • 数据结构类似于波士顿房屋的价格数据,其中该数据集中有79个特征,来描述房屋,可以通过数据描述来查看对应字段的意义
  • 同时本文也将缺失值处理的方法进行阐述
  • PoolQC 7 non-null object
  • Fence 281 non-null object
  • MiscFeature 54 non-null object 以上三个特征缺失较为明显,后文将有对应的对缺失值处理的方法

数据处理

处理异常值

  • 异常值通常是指在预期的值之外,至于如何处理异常值,怎么界定异常值,取决于个人和特定的问题
  • 对于异常值通常会在数据分布点之外,因此通常会让计算的结果和数据的分布
  • 以下图为例

with open ('data_description.txt','r') as f:
    for i in f.readlines():
        print(i)
        break
    
MSSubClass: Identifies the type of dwelling involved in the sale.   

Data fields

Here's a brief version of what you'll find in the data description file.

  • SalePrice - the property's sale price in dollars. This is the target variable that you're trying to predict.
  • MSSubClass: The building class
  • MSZoning: The general zoning classification
  • LotFrontage: Linear feet of street connected to property
  • LotArea: Lot size in square feet
  • Street: Type of road access
  • Alley: Type of alley access
  • LotShape: General shape of property
  • LandContour: Flatness of the property
  • Utilities: Type of utilities available
  • LotConfig: Lot configuration
  • LandSlope: Slope of property
  • Neighborhood: Physical locations within Ames city limits
  • Condition1: Proximity to main road or railroad
  • Condition2: Proximity to main road or railroad (if a second is present)
  • BldgType: Type of dwelling
  • HouseStyle: Style of dwelling
  • OverallQual: Overall material and finish quality
  • OverallCond: Overall condition rating
  • YearBuilt: Original construction date
  • YearRemodAdd: Remodel date
  • RoofStyle: Type of roof
  • RoofMatl: Roof material
  • Exterior1st: Exterior covering on house
  • Exterior2nd: Exterior covering on house (if more than one material)
  • MasVnrType: Masonry veneer type
  • MasVnrArea: Masonry veneer area in square feet
  • ExterQual: Exterior material quality
  • ExterCond: Present condition of the material on the exterior
  • Foundation: Type of foundation
  • BsmtQual: Height of the basement
  • BsmtCond: General condition of the basement
  • BsmtExposure: Walkout or garden level basement walls
  • BsmtFinType1: Quality of basement finished area
  • BsmtFinSF1: Type 1 finished square feet
  • BsmtFinType2: Quality of second finished area (if present)
  • BsmtFinSF2: Type 2 finished square feet
  • BsmtUnfSF: Unfinished square feet of basement area
  • TotalBsmtSF: Total square feet of basement area
  • Heating: Type of heating
  • HeatingQC: Heating quality and condition
  • CentralAir: Central air conditioning
  • Electrical: Electrical system
  • 1stFlrSF: First Floor square feet
  • 2ndFlrSF: Second floor square feet
  • LowQualFinSF: Low quality finished square feet (all floors)
  • GrLivArea: Above grade (ground) living area square feet
  • BsmtFullBath: Basement full bathrooms
  • BsmtHalfBath: Basement half bathrooms
  • FullBath: Full bathrooms above grade
  • HalfBath: Half baths above grade
  • Bedroom: Number of bedrooms above basement level
  • Kitchen: Number of kitchens
  • KitchenQual: Kitchen quality
  • TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)
  • Functional: Home functionality rating
  • Fireplaces: Number of fireplaces
  • FireplaceQu: Fireplace quality
  • GarageType: Garage location
  • GarageYrBlt: Year garage was built
  • GarageFinish: Interior finish of the garage
  • GarageCars: Size of garage in car capacity
  • GarageArea: Size of garage in square feet
  • GarageQual: Garage quality
  • GarageCond: Garage condition
  • PavedDrive: Paved driveway
  • WoodDeckSF: Wood deck area in square feet
  • OpenPorchSF: Open porch area in square feet
  • EnclosedPorch: Enclosed porch area in square feet
  • 3SsnPorch: Three season porch area in square feet
  • ScreenPorch: Screen porch area in square feet
  • PoolArea: Pool area in square feet
  • PoolQC: Pool quality
  • Fence: Fence quality
  • MiscFeature: Miscellaneous feature not covered in other categories
  • MiscVal: $Value of miscellaneous feature
  • MoSold: Month Sold
  • YrSold: Year Sold
  • SaleType: Type of sale
  • SaleCondition: Condition of sale

  • 首先看这个特征 GrLivArea: Above grade (ground) living area square feet,是指居住面积平方英尺

去除异常值
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set(style='white', context='notebook', palette='deep')
plt.subplots(figsize=(15,8))
plt.subplot(1,2,1)
g= sns.regplot(x=train['GrLivArea'],y= train['SalePrice'],fit_reg=False).set_title('Before')
plt.subplot(1,2,2)
train= train.drop(train[train['GrLivArea']>4000].index)
g=sns.regplot(x=train['GrLivArea'],y=train['SalePrice'],fit_reg=False).set_title('After')

png

  • 从以上图中可以发现,居住面积大于4000的样本总共有4个,且这个四个属于严重的偏离分布
处理缺失值
  • 缺失值可能是由于人工输入错误,机器误差等问题导致的
  • 有些例子中的缺失值可以使用0进行填充,前提是需要知道该特征代表的意义,缺失即代表0
  • 实际情况中,填充0并不总是最好的办法,而且针对不同的算法,对于缺失值处理的能力不同,本文需要使用多种算法进行拟合房价,因此如何正确处理缺失值呢,一般有两种方法:
    • 直接删掉带有缺失值的列
    • 填充缺失值
# 首先先把训练数据与测试数据的长度保持,以备后用
ntrain = train.shape[0]
ntest = test.shape[0]

# 保持训练集的目标值数据即 SalePrice
y_train = train.SalePrice.values
all_data = pd.concat((train,test)).reset_index(drop=True)
all_data.drop(['SalePrice'],axis=1,inplace=True)
all_data.drop(['Id'],axis=1,inplace=True)
print('all data shape:{}'.format(all_data.shape))
all data shape:(2915, 79)


/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:7: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version
of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

  import sys
all_data_na = all_data.isnull().sum()
all_data_na.sort_values(ascending=False)
PoolQC           2907
MiscFeature      2810
Alley            2717
Fence            2345
FireplaceQu      1420
LotFrontage       486
GarageFinish      159
GarageQual        159
GarageYrBlt       159
GarageCond        159
GarageType        157
BsmtCond           82
BsmtExposure       82
BsmtQual           81
BsmtFinType2       80
BsmtFinType1       79
MasVnrType         24
MasVnrArea         23
MSZoning            4
BsmtHalfBath        2
Utilities           2
Functional          2
BsmtFullBath        2
Electrical          1
Exterior2nd         1
KitchenQual         1
GarageCars          1
Exterior1st         1
GarageArea          1
TotalBsmtSF         1
                 ... 
GrLivArea           0
YearRemodAdd        0
YearBuilt           0
WoodDeckSF          0
TotRmsAbvGrd        0
Street              0
ScreenPorch         0
SaleCondition       0
RoofStyle           0
RoofMatl            0
PoolArea            0
PavedDrive          0
OverallQual         0
OverallCond         0
OpenPorchSF         0
Neighborhood        0
MoSold              0
MiscVal             0
MSSubClass          0
LowQualFinSF        0
LotShape            0
LotConfig           0
LotArea             0
LandSlope           0
LandContour         0
KitchenAbvGr        0
HouseStyle          0
HeatingQC           0
Heating             0
1stFlrSF            0
Length: 79, dtype: int64
all_data_na = all_data_na.drop(all_data_na[all_data_na==0].index).sort_values(ascending=False)
plt.subplots(figsize=(12,6))
all_data_na.plot(kind='Bar')
<matplotlib.axes._subplots.AxesSubplot at 0x128568710>

png

!pip install xgboost
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: xgboost in /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages (0.90)
Requirement already satisfied: numpy in /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages (from xgboost) (1.16.2)
Requirement already satisfied: scipy in /Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages (from xgboost) (1.2.1)
train[all_data_na.index[:25]].info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1456 entries, 0 to 1459
Data columns (total 25 columns):
PoolQC          5 non-null object
MiscFeature     54 non-null object
Alley           91 non-null object
Fence           280 non-null object
FireplaceQu     766 non-null object
LotFrontage     1197 non-null float64
GarageQual      1375 non-null object
GarageCond      1375 non-null object
GarageFinish    1375 non-null object
GarageYrBlt     1375 non-null float64
GarageType      1375 non-null object
BsmtExposure    1418 non-null object
BsmtCond        1419 non-null object
BsmtQual        1419 non-null object
BsmtFinType2    1418 non-null object
BsmtFinType1    1419 non-null object
MasVnrType      1448 non-null object
MasVnrArea      1448 non-null float64
MSZoning        1456 non-null object
BsmtFullBath    1456 non-null int64
BsmtHalfBath    1456 non-null int64
Utilities       1456 non-null object
Functional      1456 non-null object
Electrical      1455 non-null object
BsmtUnfSF       1456 non-null int64
dtypes: float64(3), int64(3), object(19)
memory usage: 295.8+ KB
  • for category feature we,fill these missing values with "None"
  • for float feature and the number of missing values seemingly much larger ,we fill these missing values with median of the feature
  • for float feature and the number of missing values smaller, we will fill these missing values with mode
for col in ("PoolQC", 'MiscFeature', 'Alley', 'Fence', 'FireplaceQu', 'GarageQual', 'GarageCond',
            'GarageFinish', 'GarageType','BsmtExposure','BsmtCond','BsmtQual','BsmtFinType2','BsmtFinType1',
           'MasVnrType'):
    all_data[col] = all_data[col].fillna('None')

    
print('处理object类型缺失值,根据特征的描述,特征缺失值补充为"None",已完成')
    
for col in ("GarageYrBlt", "GarageArea", "GarageCars", "BsmtFinSF1", 
           "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "MasVnrArea",
           "BsmtFullBath", "BsmtHalfBath"):
    all_data[col] = all_data[col].fillna(0)

print('处理数值类型的缺失值,根据特征的描述,选择特征缺失值补充为0,已完成')


all_data['MSZoning'] = all_data['MSZoning'].fillna(all_data['MSZoning'].mode()[0])
all_data['Electrical'] = all_data['Electrical'].fillna(all_data['Electrical'].mode()[0])
all_data['KitchenQual'] = all_data['KitchenQual'].fillna(all_data['KitchenQual'].mode()[0])
all_data['Exterior1st'] = all_data['Exterior1st'].fillna(all_data['Exterior1st'].mode()[0])
all_data['Exterior2nd'] = all_data['Exterior2nd'].fillna(all_data['Exterior2nd'].mode()[0])
all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].mode()[0])
all_data["Functional"] = all_data["Functional"].fillna(all_data['Functional'].mode()[0])

print('处理缺失值较少的缺失值,数据类型为数值,填充缺失值为该特征的众数,已完成')

all_data_na = all_data.isnull().sum()
print("Features with missing values: ", all_data_na.drop(all_data_na[all_data_na == 0].index))
处理object类型缺失值,根据特征的描述,特征缺失值补充为"None",已完成
处理数值类型的缺失值,根据特征的描述,选择特征缺失值补充为0,已完成
处理缺失值较少的缺失值,数据类型为数值,填充缺失值为该特征的众数,已完成
Features with missing values:  LotFrontage    486
Utilities        2
dtype: int64
all_data.groupby(["Neighborhood"])['LotFrontage'].sum()
Neighborhood
Blmngtn      938.0
Blueste      273.0
BrDale       645.0
BrkSide     5300.0
ClearCr     1763.0
CollgCr    15694.0
Crawfor     5806.0
Edwards    11467.0
Gilbert     8237.0
IDOTRR      5415.0
MeadowV      845.0
Mitchel     6763.0
NAmes      28204.0
NPkVill      591.0
NWAmes      6929.0
NoRidge     4684.0
NridgHt    13722.0
OldTown    14147.0
SWISU       2599.0
Sawyer      7306.0
SawyerW     7491.0
Somerst    10457.0
StoneBr     2860.0
Timber      4626.0
Veenker     1152.0
Name: LotFrontage, dtype: float64
all_data['LotFrontage']=all_data.groupby("Neighborhood")["LotFrontage"].transform(
    lambda x: x.fillna(x.median()))
分析 Utilities
plt.subplots(figsize=(12,5))
plt.subplot(1,2,1)
g=sns.countplot(x='Utilities',data=train).set_title('Utilities_train')
plt.subplot(1,2,2)
g=sns.countplot(x='Utilities',data=test).set_title('Utilities_test')

png

train['Utilities'].value_counts()
AllPub    1455
NoSeWa       1
Name: Utilities, dtype: int64
test['Utilities'].value_counts()
AllPub    1457
Name: Utilities, dtype: int64
all_data = all_data.drop(['Utilities'], axis=1)
all_data_na = all_data.isnull().sum()
print("Features with missing values: ", len(all_data_na.drop(all_data_na[all_data_na == 0].index)))
Features with missing values:  0

Exploratory Data Analysis

Correlation matrix
  • 异常值与缺失值已经处理完毕,进一步需要特征之间与特征与目标值之间的关系,相关系数矩阵就是提供了反应特征与目标值之间关系的一个参考
corr = train.corr()
plt.subplots(figsize=(30,30))
cmap = sns.diverging_palette(150, 250, as_cmap=True)
sns.heatmap(corr, cmap="RdYlBu", vmax=1, vmin=-0.6, center=0.2, square=True, linewidths=0, cbar_kws={"shrink": .5}, annot = True)
<matplotlib.axes._subplots.AxesSubplot at 0x12901bc18>

png

  • for raw highly influencing factors on SalePrice, we could do feature engineering

  • 从相关系数矩阵中,我们挑选了一些跟最终售价相关性较高的做进一步的分析

  • 主要的影响因素有以下几个:
  1. OverallQual Overall material and finish quality 整体的物料以及完成质量
  2. GrLivArea Above grade (ground) living area square feet 地面以上的居住面积 平方英尺
  3. GarageCars Size of garage in car capacity 停车场的大小,可以放几辆车
  4. GarageArea Size of garage in square feet 停车场的面积大小
  5. TotalBsmtSF Total square feet of basement area 地下室的面积 平方英尺
  6. 1stFlrSF First Floor square feet 一楼的面积 平方英尺
  7. FullBath Full bathrooms above grade 地上卫生间
  8. TotRmsAbvGrd Total rooms above grade (does not include bathrooms) 地上去掉卫生间的房屋数
  9. Fireplaces 壁炉数量
  10. MasVnrArea Masonry veneer area in square feet 粗略可以理解为石灰结构的建筑面积
  11. BsmtFinSF1 Quality of basement finished area Type 1 finished square feet地下室的完成面积
  12. LotFrontage Linear feet of street connected to property 距离街道的距离
  13. WoodDeckSF Wood deck area in square feet 木质结构的建筑面积
  14. OpenPorchSF Open porch area in square feet 开放式门廊的面积
  15. 2ndFlrSF Second floor square feet 二楼的面积
# Quadratic
all_data["OverallQual-2"] = all_data["OverallQual"] ** 2
all_data["GrLivArea-2"] = all_data["GrLivArea"] ** 2
all_data["GarageCars-2"] = all_data["GarageCars"] ** 2
all_data["GarageArea-2"] = all_data["GarageArea"] ** 2
all_data["TotalBsmtSF-2"] = all_data["TotalBsmtSF"] ** 2
all_data["1stFlrSF-2"] = all_data["1stFlrSF"] ** 2
all_data["FullBath-2"] = all_data["FullBath"] ** 2
all_data["TotRmsAbvGrd-2"] = all_data["TotRmsAbvGrd"] ** 2
all_data["Fireplaces-2"] = all_data["Fireplaces"] ** 2
all_data["MasVnrArea-2"] = all_data["MasVnrArea"] ** 2
all_data["BsmtFinSF1-2"] = all_data["BsmtFinSF1"] ** 2
all_data["LotFrontage-2"] = all_data["LotFrontage"] ** 2
all_data["WoodDeckSF-2"] = all_data["WoodDeckSF"] ** 2
all_data["OpenPorchSF-2"] = all_data["OpenPorchSF"] ** 2
all_data["2ndFlrSF-2"] = all_data["2ndFlrSF"] ** 2
print("Quadratics done!...")


# Cubic
all_data["OverallQual-23"] = all_data["OverallQual"] ** 3
all_data["GrLivArea-3"] = all_data["GrLivArea"] ** 3
all_data["GarageCars-3"] = all_data["GarageCars"] **3
all_data["GarageArea-3"] = all_data["GarageArea"] ** 3
all_data["TotalBsmtSF-3"] = all_data["TotalBsmtSF"] ** 3
all_data["1stFlrSF-3"] = all_data["1stFlrSF"] ** 3
all_data["FullBath-3"] = all_data["FullBath"] ** 3
all_data["TotRmsAbvGrd-3"] = all_data["TotRmsAbvGrd"] ** 3
all_data["Fireplaces-3"] = all_data["Fireplaces"] ** 3
all_data["MasVnrArea-3"] = all_data["MasVnrArea"] ** 3
all_data["BsmtFinSF1-3"] = all_data["BsmtFinSF1"] ** 3
all_data["LotFrontage-3"] = all_data["LotFrontage"] ** 3
all_data["WoodDeckSF-3"] = all_data["WoodDeckSF"] ** 3
all_data["OpenPorchSF-3"]=all_data["OpenPorchSF"] ** 3
all_data["2ndFlrSF-3"]= all_data["2ndFlrSF"] ** 3
print("Quadratics done!...")



# Square Root
all_data["OverallQual-Sq"] = np.sqrt(all_data["OverallQual"])
all_data["GrLivArea-Sq"] = np.sqrt(all_data["GrLivArea"])
all_data["GarageCars-Sq"] = np.sqrt(all_data["GarageCars"])
all_data["GarageArea-Sq"] = np.sqrt(all_data["GarageArea"])
all_data["TotalBsmtSF-Sq"] = np.sqrt(all_data["TotalBsmtSF"])
all_data["1stFlrSF-Sq"] = np.sqrt(all_data["1stFlrSF"])
all_data["FullBath-Sq"] = np.sqrt(all_data["FullBath"])
all_data["TotRmsAbvGrd-Sq"] = np.sqrt(all_data["TotRmsAbvGrd"])
all_data["Fireplaces-Sq"] = np.sqrt(all_data["Fireplaces"])
all_data["MasVnrArea-Sq"] = np.sqrt(all_data["MasVnrArea"])
all_data["BsmtFinSF1-Sq"] = np.sqrt(all_data["BsmtFinSF1"])
all_data["LotFrontage-Sq"] = np.sqrt(all_data["LotFrontage"])
all_data["WoodDeckSF-Sq"] = np.sqrt(all_data["WoodDeckSF"])
all_data["OpenPorchSF-Sq"] = np.sqrt(all_data["OpenPorchSF"])
all_data["2ndFlrSF-Sq"] = np.sqrt(all_data["2ndFlrSF"])
print("Roots done!...")





Quadratics done!...
Quadratics done!...
Roots done!...
BsmtQual
train['BsmtQual'].value_counts()
TA    649
Gd    618
Ex    117
Fa     35
Name: BsmtQual, dtype: int64
train.groupby(['BsmtQual'])['SalePrice'].mean()
"""
BsmtQual: Evaluates the height of the basement

       Ex   Excellent (100+ inches) 
       Gd   Good (90-99 inches)
       TA   Typical (80-89 inches)
       Fa   Fair (70-79 inches)
       Po   Poor (<70 inches
       NA   No Basement
"""
'\nBsmtQual: Evaluates the height of the basement\n\n       Ex\tExcellent (100+ inches)\t\n       Gd\tGood (90-99 inches)\n       TA\tTypical (80-89 inches)\n       Fa\tFair (70-79 inches)\n       Po\tPoor (<70 inches\n       NA\tNo Basement\n'
plt.subplots(figsize=(20,6))
plt.subplot(1,3,1)# 箱形图
sns.boxplot(x='BsmtQual',y='SalePrice',data=train,order= ['Fa', 'TA', 'Gd', 'Ex'])


plt.subplot(1,3,2) # x轴里的类别进行分类
sns.stripplot(x='BsmtQual',y='SalePrice',data=train,size=5,jitter=True,order= ['Fa', 'TA', 'Gd', 'Ex'])


plt.subplot(1,3,3) # 柱状图
sns.barplot(x='BsmtQual',y='SalePrice',data=train,order= ['Fa', 'TA', 'Gd', 'Ex'],estimator=np.mean)
<matplotlib.axes._subplots.AxesSubplot at 0x1263d5e10>

png

all_data['BsmtQual'] = all_data['BsmtQual'].map({"None":0, "Fa":1, "TA":2, "Gd":3, "Ex":4})
all_data['BsmtQual'].unique()
array([3, 2, 4, 0, 1])
all_data['BsmtQual'].value_counts()
2    1283
3    1209
4     254
1      88
0      81
Name: BsmtQual, dtype: int64
  • 很明显,该特征能够显著的影响销售价格,而且越高的的地下室,对应的价格也越高
  • typical and good 两个分部数量较大,占比较高
  • 可以将该特征的变量是有高低好坏之分的,也就是category 特征的顺序性,可以转化为数字(个人觉得意义不大)
BsmtCond
"""
BsmtCond: Evaluates the general condition of the basement

       Ex   Excellent
       Gd   Good
       TA   Typical - slight dampness allowed
       Fa   Fair - dampness or some cracking or settling
       Po   Poor - Severe cracking, settling, or wetness
       NA   No Basement
"""


'\nBsmtCond: Evaluates the general condition of the basement\n\n       Ex\tExcellent\n       Gd\tGood\n       TA\tTypical - slight dampness allowed\n       Fa\tFair - dampness or some cracking or settling\n       Po\tPoor - Severe cracking, settling, or wetness\n       NA\tNo Basement\n'
plt.subplots(figsize=(20,5))
plt.subplot(1,3,1)
sns.boxplot(x='BsmtCond',y='SalePrice',data=train,order=['Po','Fa','TA','Gd'])
plt.subplot(1,3,2)


sns.stripplot(x='BsmtCond',y='SalePrice',data=train,size=5,jitter=True,order= ['Po','Fa','TA','Gd'])


plt.subplot(1,3,3)


sns.barplot(x='BsmtCond',y='SalePrice',data=train,order=['Po','Fa','TA','Gd'])

<matplotlib.axes._subplots.AxesSubplot at 0x12ab8d6d8>

png

train['BsmtCond'].value_counts()
TA    1307
Gd      65
Fa      45
Po       2
Name: BsmtCond, dtype: int64
  • 图二中的Typical样本数据占比较高,从barplot中可以看出该特征能够很明显的影响售出价格
  • 针对图一种的TA价格较为分散,价格分布离散
all_data['BsmtCond'] = all_data['BsmtCond'].map({"None":0, "Po":1, "Fa":2, "TA":3,"Gd":4, "Ex":5})
all_data['BsmtCond'].unique()
array([3, 4, 0, 2, 1])
BsmtExplosure
"""
BsmtExposure: Refers to walkout or garden level walls

       Gd   Good Exposure
       Av   Average Exposure (split levels or foyers typically score average or above)  
       Mn   Mimimum Exposure
       No   No Exposure
       NA   No Basement

"""
'\nBsmtExposure: Refers to walkout or garden level walls\n\n       Gd\tGood Exposure\n       Av\tAverage Exposure (split levels or foyers typically score average or above)\t\n       Mn\tMimimum Exposure\n       No\tNo Exposure\n       NA\tNo Basement\n\n'
plt.subplots(figsize=(20,5))
plt.subplot(1,3,1)
sns.boxplot(x='BsmtExposure',y='SalePrice',data=train,order=['No','Mn','Av','Gd'])
plt.subplot(1,3,2)
sns.stripplot(x='BsmtExposure',y='SalePrice',data=train,size=5,jitter=True,order= ['No','Mn','Av','Gd'])
plt.subplot(1,3,3)
sns.barplot(x='BsmtExposure',y='SalePrice',data=train,order=['No','Mn','Av','Gd'])
<matplotlib.axes._subplots.AxesSubplot at 0x12b8e4470>

png

all_data['BsmtExposure'] = all_data['BsmtExposure'].map({"None":0, "No":1, "Mn":2, "Av":3,"Gd":4})
all_data['BsmtExposure'].unique()
array([1, 4, 2, 3, 0])
BsmtFinType1
"""
BsmtFinType1: Rating of basement finished area

       GLQ  Good Living Quarters
       ALQ  Average Living Quarters
       BLQ  Below Average Living Quarters   
       Rec  Average Rec Room
       LwQ  Low Quality
       Unf  Unfinshed
       NA   No Basement
"""
'\nBsmtFinType1: Rating of basement finished area\n\n       GLQ\tGood Living Quarters\n       ALQ\tAverage Living Quarters\n       BLQ\tBelow Average Living Quarters\t\n       Rec\tAverage Rec Room\n       LwQ\tLow Quality\n       Unf\tUnfinshed\n       NA\tNo Basement\n'
plt.subplots(figsize =(20, 5))

plt.subplot(1, 3, 1)
sns.boxplot(x="BsmtFinType1", y="SalePrice", data=train, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]);

plt.subplot(1, 3, 2)
sns.stripplot(x="BsmtFinType1", y="SalePrice", data=train, size = 5, jitter = True, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]);

plt.subplot(1, 3, 3)
sns.barplot(x="BsmtFinType1", y="SalePrice", data=train, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]);

png

  • 可以从图一中看出,很多没有装修完的地下室房屋的价格很高
  • 从图三中可以看到,这些category 不是按照顺序的提高,房屋的销售价提高与category的顺序没有必然关系
  • 因此将这个特征进行one-hot转化,可以使用pandas 中的get_dummy函数进行转化
all_data = pd.get_dummies(all_data, columns = ["BsmtFinType1"], prefix="BsmtFinType1")
all_data.head(3)
1stFlrSF 2ndFlrSF 3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFinSF1 BsmtFinSF2 ... WoodDeckSF-Sq OpenPorchSF-Sq 2ndFlrSF-Sq BsmtFinType1_ALQ BsmtFinType1_BLQ BsmtFinType1_GLQ BsmtFinType1_LwQ BsmtFinType1_None BsmtFinType1_Rec BsmtFinType1_Unf
0 856 854 0 None 3 1Fam 3 1 706.0 0.0 ... 0.000000 7.810250 29.223278 0 0 1 0 0 0 0
1 1262 0 0 None 3 1Fam 3 4 978.0 0.0 ... 17.262677 0.000000 0.000000 1 0 0 0 0 0 0
2 920 866 0 None 3 1Fam 3 2 486.0 0.0 ... 0.000000 6.480741 29.427878 0 0 1 0 0 0 0

3 rows × 129 columns

BsmtFinSF1
  • BsmtFinSF1: Type 1 finished square feet
from scipy.stats.stats import pearsonr
grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25) 
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
plt.subplots(figsize=(30,15))
plt.subplot(grid[0,0])


g = sns.regplot(x=train['BsmtFinSF1'], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train['BsmtFinSF1'], train['SalePrice'])[0]))
# g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
g.legend(loc='best')

plt.subplot(grid[0,1:])

sns.boxplot(x='Neighborhood',y='BsmtFinSF1',data=train)

plt.subplot(grid[1,0])
sns.barplot(x='BldgType',y= 'BsmtFinSF1',data=train)


plt.subplot(grid[1,1])

sns.barplot(x='HouseStyle',y ='BsmtFinSF1',data=train)

plt.subplot(grid[1,2])


sns.barplot(x='LotShape',y='BsmtFinSF1',data=train)
<matplotlib.axes._subplots.AxesSubplot at 0x129034e10>

png

  • 地下室完成面积对于销售价格来说影响很大,但是对于Neighborhood以及BldgType houseType LotShape 影响各异,这三个因素对于完成面积影响没有规律可循
  • 但是特征是连续的数值特质,因此考虑将其进行切割分组
bins = [-5,1000,2000,3000,float('inf')]
all_data['BsmtFinSF1_Band'] = pd.cut(all_data['BsmtFinSF1'], bins,labels=['1','2','3','4'])
all_data['BsmtFinSF1_Band'].unique()
all_data.drop('BsmtFinSF1',axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["BsmtFinSF1_Band"], prefix="BsmtFinSF1")
all_data.head()
1stFlrSF 2ndFlrSF 3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFinSF2 BsmtFinType2 ... BsmtFinType1_BLQ BsmtFinType1_GLQ BsmtFinType1_LwQ BsmtFinType1_None BsmtFinType1_Rec BsmtFinType1_Unf BsmtFinSF1_1 BsmtFinSF1_2 BsmtFinSF1_3 BsmtFinSF1_4
0 856 854 0 None 3 1Fam 3 1 0.0 Unf ... 0 1 0 0 0 0 1 0 0 0
1 1262 0 0 None 3 1Fam 3 4 0.0 Unf ... 0 0 0 0 0 0 1 0 0 0
2 920 866 0 None 3 1Fam 3 2 0.0 Unf ... 0 1 0 0 0 0 1 0 0 0
3 961 756 0 None 3 1Fam 4 1 0.0 Unf ... 0 0 0 0 0 0 1 0 0 0
4 1145 1053 0 None 4 1Fam 3 3 0.0 Unf ... 0 1 0 0 0 0 1 0 0 0

5 rows × 132 columns

BsmtFinType2
"""
BsmtFinType2: Rating of basement finished area (if multiple types)

       GLQ  Good Living Quarters
       ALQ  Average Living Quarters
       BLQ  Below Average Living Quarters   
       Rec  Average Rec Room
       LwQ  Low Quality
       Unf  Unfinshed
       NA   No Basement

"""
'\nBsmtFinType2: Rating of basement finished area (if multiple types)\n\n       GLQ\tGood Living Quarters\n       ALQ\tAverage Living Quarters\n       BLQ\tBelow Average Living Quarters\t\n       Rec\tAverage Rec Room\n       LwQ\tLow Quality\n       Unf\tUnfinshed\n       NA\tNo Basement\n\n'
plt.subplots(figsize =(20, 5))

plt.subplot(1, 3, 1)
sns.boxplot(x="BsmtFinType2", y="SalePrice", data=train, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]);

plt.subplot(1, 3, 2)
sns.stripplot(x="BsmtFinType2", y="SalePrice", data=train, size = 5, jitter = True, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]);

plt.subplot(1, 3, 3)
sns.barplot(x="BsmtFinType2", y="SalePrice", data=train, order=["Unf", "LwQ", "Rec", "BLQ", "ALQ", "GLQ"]);

png

  • 很多房子的第二个地下室没有装修完工,且价格分化很大
  • 第二个装修的地下室的装修好坏对于价格影响没有像之前的那样的顺序关系(图三)
  • 因此,需要将该特征转化为one-hot哑变量
all_data = pd.get_dummies(all_data, columns = ["BsmtFinType2"], prefix="BsmtFinType2")  # columns 参数要传入列表

all_data.head(3)
"""
columns : list-like, default None
Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted.

"""
'\ncolumns : list-like, default None\nColumn names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted.\n\n'
BsmtFinSF2
"""
BsmtFinSF2: Type 2 finished square feet
"""
grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25) 
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
plt.subplots(figsize=(30,15))
plt.subplot(grid[0,0])


g = sns.regplot(x=train['BsmtFinSF2'], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train['BsmtFinSF2'], train['SalePrice'])[0]))
# g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
g.legend(loc='best')

plt.subplot(grid[0,1:])

sns.boxplot(x='Neighborhood',y='BsmtFinSF2',data=train)

plt.subplot(grid[1,0])
sns.barplot(x='BldgType',y= 'BsmtFinSF2',data=train)


plt.subplot(grid[1,1])

sns.barplot(x='HouseStyle',y ='BsmtFinSF2',data=train)

plt.subplot(grid[1,2])


sns.barplot(x='LotShape',y='BsmtFinSF2',data=train)
<matplotlib.axes._subplots.AxesSubplot at 0x12c7a68d0>

png

  • 已装修完成的第二个地下室的面积与销售价格没有明显的关系
  • 而且大部分的数据都是未完成装修的,与上一个特征相关性较高
  • 可以采用是否完成装修来转化该特征(类似于缺失值的补充,变成是否缺失)
all_data['BsmtFinType2_None'].value_counts()
0    2835
1      80
Name: BsmtFinType2_None, dtype: int64
all_data['BsmtFinSf2_Flag'] = all_data['BsmtFinSF2'].map(lambda x:0 if x==0 else 1)
all_data.drop('BsmtFinSF2', axis=1, inplace=True)
all_data['BsmtFinSf2_Flag'].value_counts()
0    2568
1     347
Name: BsmtFinSf2_Flag, dtype: int64
BsmtUnfSF
"""
Unfinished square feet of basement area

"""
grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25) 
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
plt.subplots(figsize=(30,15))
plt.subplot(grid[0,0])


g = sns.regplot(x=train['BsmtUnfSF'], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train['BsmtUnfSF'], train['SalePrice'])[0]))
# g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
g.legend(loc='best')

plt.subplot(grid[0,1:])

sns.boxplot(x='Neighborhood',y='BsmtUnfSF',data=train)

plt.subplot(grid[1,0])
sns.barplot(x='BldgType',y= 'BsmtUnfSF',data=train)


plt.subplot(grid[1,1])

sns.barplot(x='HouseStyle',y ='BsmtUnfSF',data=train)

plt.subplot(grid[1,2])


sns.barplot(x='LotShape',y='BsmtUnfSF',data=train)
<matplotlib.axes._subplots.AxesSubplot at 0x118d8b940>

png

"""
This feature has a significant positive correlation with SalePrice, with a small proportion of data points having a value of 0.
This tells me that most houses will have some amount of square feet unfinished within the basement, and this actually positively contributes towards SalePrice.
The amount of unfinished square feet also varies widely based on location and style.
Whereas the average unfinished square feet within the basement is fairly consistent across the different lot shapes.
Since this is a continuous numeric feature with a significant correlation, I will bin this and create dummy variables.
与售价正相关,
Unfinished square feet of basement area 与lot shape 没啥关系
连续值变量,需要进行封箱操作,然后将封箱之后的特征进行one-hot转化
"""
all_data['BsmtUnfSF_Band'] = pd.cut(all_data['BsmtUnfSF'], 3,labels=['1','2','3'])
all_data.drop('BsmtUnfSF',axis=1,inplace=True)
all_data['BsmtUnfSF_Band'].unique()
all_data['BsmtUnfSF_Band'] = all_data['BsmtUnfSF_Band'].astype(int)
all_data = pd.get_dummies(all_data, columns = ["BsmtUnfSF_Band"], prefix="BsmtUnfSF")
all_data.head()
1stFlrSF 2ndFlrSF 3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFullBath BsmtHalfBath ... BsmtFinType2_BLQ BsmtFinType2_GLQ BsmtFinType2_LwQ BsmtFinType2_None BsmtFinType2_Rec BsmtFinType2_Unf BsmtFinSf2_Flag BsmtUnfSF_1 BsmtUnfSF_2 BsmtUnfSF_3
0 856 854 0 None 3 1Fam 3 1 1.0 0.0 ... 0 0 0 0 0 1 0 1 0 0
1 1262 0 0 None 3 1Fam 3 4 0.0 1.0 ... 0 0 0 0 0 1 0 1 0 0
2 920 866 0 None 3 1Fam 3 2 1.0 0.0 ... 0 0 0 0 0 1 0 1 0 0
3 961 756 0 None 3 1Fam 4 1 1.0 0.0 ... 0 0 0 0 0 1 0 1 0 0
4 1145 1053 0 None 4 1Fam 3 3 1.0 0.0 ... 0 0 0 0 0 1 0 1 0 0

5 rows × 140 columns

TotalBsmtSF
"""
Total square feet of basement area.
"""
grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25) 
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
plt.subplots(figsize=(30,15))
plt.subplot(grid[0,0])


g = sns.regplot(x=train['TotalBsmtSF'], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train['TotalBsmtSF'], train['SalePrice'])[0]))
# g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
g.legend(loc='best')

plt.subplot(grid[0,1:])

sns.boxplot(x='Neighborhood',y='TotalBsmtSF',data=train)

plt.subplot(grid[1,0])
sns.barplot(x='BldgType',y= 'TotalBsmtSF',data=train)


plt.subplot(grid[1,1])

sns.barplot(x='HouseStyle',y ='TotalBsmtSF',data=train)

plt.subplot(grid[1,2])


sns.barplot(x='LotShape',y='TotalBsmtSF',data=train)
<matplotlib.axes._subplots.AxesSubplot at 0x12d9b3d30>

png

def get_feature_corr(feature_name):
    grid = plt.GridSpec(2,3,wspace=0.15,hspace=0.25) 
# 创建画布指定子图将放置的网格的几何位置。 需要设置网格的行数和列数。 子图布局参数(例如,左,右等)可以选择性调整。
    plt.subplots(figsize=(30,15))
    plt.subplot(grid[0,0])


    g = sns.regplot(x=train[feature_name], y=train['SalePrice'], fit_reg=False, label = "corr: %2f"%(pearsonr(train[feature_name], train['SalePrice'])[0]))
    # g= sns.regplot(x=train['BsmtFinSF1'],y=train["SalePrice"],fit_reg==False,label= "Corr:%2f" %(pearsonr(train['BsmtFinType1'],train['SalePrice'])[0]))
    g.legend(loc='best')

    plt.subplot(grid[0,1:])

    sns.boxplot(x='Neighborhood',y=feature_name,data=train)

    plt.subplot(grid[1,0])
    sns.barplot(x='BldgType',y= feature_name,data=train)


    plt.subplot(grid[1,1])

    sns.barplot(x='HouseStyle',y =feature_name,data=train)

    plt.subplot(grid[1,2])


    sns.barplot(x='LotShape',y=feature_name,data=train)
    plt.show()
1stFlrSF
get_feature_corr('1stFlrSF')
"""
First floor square feet.
"""

png

'\nFirst floor square feet.\n'
  • 第一层的面积与售价有着很强的相关性
  • 不同的街区对于第一层的面积分布范围变化很大
  • 对于不同的房型,第一层的面积变化不大
  • 该特征为连续值,需要进行封箱然后one-hot转化
all_data['1stFlrSF_Band'] = pd.cut(all_data['1stFlrSF'], 6,labels=['1','2','3','4','5','6'])
all_data['1stFlrSF_Band'].unique()
all_data['1stFlrSF_Band'] = all_data['1stFlrSF_Band'].astype(int)

all_data.drop('1stFlrSF', axis=1, inplace=True)
all_data = pd.get_dummies(all_data, columns = ["1stFlrSF_Band"], prefix="1stFlrSF")
all_data.head(3)
2ndFlrSF 3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFullBath BsmtHalfBath BsmtQual ... BsmtFinSf2_Flag BsmtUnfSF_1 BsmtUnfSF_2 BsmtUnfSF_3 1stFlrSF_1 1stFlrSF_2 1stFlrSF_3 1stFlrSF_4 1stFlrSF_5 1stFlrSF_6
0 854 0 None 3 1Fam 3 1 1.0 0.0 3 ... 0 1 0 0 1 0 0 0 0 0
1 0 0 None 3 1Fam 3 4 0.0 1.0 3 ... 0 1 0 0 0 1 0 0 0 0
2 866 0 None 3 1Fam 3 2 1.0 0.0 3 ... 0 1 0 0 1 0 0 0 0 0

3 rows × 145 columns

2ndFlrSF
get_feature_corr('2ndFlrSF')
"""
Second floor square feet.
"""

png

'\nSecond floor square feet.\n'
  • 很多房子没有第二层,所有很多房子的第二层面积为0
  • 第二层面积与街区的变化很大
  • 对于不同的房型,第二层的面积变化很大
  • 连续值变量,进行封箱,然后进行one-hot转化
all_data['2ndFlrSF_Band'] = pd.cut(all_data['2ndFlrSF'], 6,labels=list('123456'))
all_data['2ndFlrSF_Band'].unique()
all_data=pd.get_dummies(all_data,columns=['2ndFlrSF_Band'],prefix="2ndFlrSF")
all_data.drop('2ndFlrSF', axis=1, inplace=True)
all_data.head()
3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtFullBath BsmtHalfBath BsmtQual CentralAir ... 1stFlrSF_3 1stFlrSF_4 1stFlrSF_5 1stFlrSF_6 2ndFlrSF_1 2ndFlrSF_2 2ndFlrSF_3 2ndFlrSF_4 2ndFlrSF_5 2ndFlrSF_6
0 0 None 3 1Fam 3 1 1.0 0.0 3 Y ... 0 0 0 0 0 0 1 0 0 0
1 0 None 3 1Fam 3 4 0.0 1.0 3 Y ... 0 0 0 0 1 0 0 0 0 0
2 0 None 3 1Fam 3 2 1.0 0.0 3 Y ... 0 0 0 0 0 0 1 0 0 0
3 0 None 3 1Fam 4 1 1.0 0.0 2 Y ... 0 0 0 0 0 0 1 0 0 0
4 0 None 4 1Fam 3 3 1.0 0.0 3 Y ... 0 0 0 0 0 0 0 1 0 0

5 rows × 150 columns

LowQualFinSF
get_feature_corr('LowQualFinSF')

'''
Low quality finished square feet (all floors)
'''

png

'\nLow quality finished square feet (all floors)\n'
  • 针对该特征可以将特征转化为0-1
all_data['LowQualFinSF_Flag'] = all_data['LowQualFinSF'].map(lambda x:0 if x==0 else 1)
all_data.drop('LowQualFinSF', axis=1, inplace=True)
BsmtHalfBath BsmtFullBath HalfBath FullBath
all_data['TotalBathrooms'] = all_data['BsmtHalfBath'] + all_data['BsmtFullBath'] + all_data['HalfBath'] + all_data['FullBath']

columns = ['BsmtHalfBath', 'BsmtFullBath', 'HalfBath', 'FullBath']
all_data.drop(columns, axis=1, inplace=True)
def get_feature_corr1(feature_name,order=None):
    plt.subplots(figsize =(20, 5))

    plt.subplot(1, 3, 1)
    sns.boxplot(x=feature_name, y="SalePrice", data=train,order=order)

    plt.subplot(1, 3, 2)
    sns.stripplot(x=feature_name, y="SalePrice", data=train, size = 5, jitter = True ,order=order);

    plt.subplot(1, 3, 3)
    sns.barplot(x=feature_name, y="SalePrice", data=train,order=order)
    plt.show()
get_feature_corr1('BedroomAbvGr',order=None)
"""
Bedrooms above grade (does not include basement bedrooms)
"""

png

'\nBedrooms above grade (does not include basement bedrooms)\n'
get_feature_corr1('KitchenAbvGr',order=None)

png

get_feature_corr1('KitchenQual',order=['Fa','TA','Gd','Ex'])
print("""
该特征需要转化category with order
""")

png


该特征需要转化category with order

all_data['KitchenQual'] = all_data['KitchenQual'].map({"Fa":1, "TA":2, "Gd":3, "Ex":4})
all_data['KitchenQual'].unique()
array([3, 2, 4, 1])
TotRmsAbvGrd
get_feature_corr1('TotRmsAbvGrd')

png

Fireplaces
get_feature_corr1('Fireplaces')

png

FireplaceQu
get_feature_corr1('FireplaceQu',order=['Po','Fa','TA','Gd','Ex'])

png

all_data['FireplaceQu'] = all_data['FireplaceQu'].map({"None":0, "Po":1, "Fa":2, "TA":3, "Gd":4, "Ex":5})
all_data['FireplaceQu'].unique()
array([0, 3, 4, 2, 5, 1])
GrLivArea
get_feature_corr('GrLivArea')

png

  • 特征为连续值,且与售价相关性非常强
  • 封箱然后转化为one-hot特征
all_data['GrLivArea_Band'] = pd.cut(all_data['GrLivArea'], 6,labels=list('123456'))
all_data['GrLivArea_Band'].unique()
all_data['GrLivArea_Band'] = all_data['GrLivArea_Band'].astype(int)
all_data.drop('GrLivArea',axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["GrLivArea_Band"], prefix="GrLivArea")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 ... 2ndFlrSF_5 2ndFlrSF_6 LowQualFinSF_Flag TotalBathrooms GrLivArea_1 GrLivArea_2 GrLivArea_3 GrLivArea_4 GrLivArea_5 GrLivArea_6
0 0 None 3 1Fam 3 1 3 Y Norm Norm ... 0 0 0 4.0 0 1 0 0 0 0
1 0 None 3 1Fam 3 4 3 Y Feedr Norm ... 0 0 0 3.0 0 1 0 0 0 0
2 0 None 3 1Fam 3 2 3 Y Norm Norm ... 0 0 0 4.0 0 1 0 0 0 0

3 rows × 152 columns

MSSubClass
get_feature_corr1('MSSubClass')

png

all_data['MSSubClass'] = all_data['MSSubClass'].astype(str)

all_data = pd.get_dummies(all_data, columns = ["MSSubClass"], prefix="MSSubClass")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BldgType BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 ... MSSubClass_30 MSSubClass_40 MSSubClass_45 MSSubClass_50 MSSubClass_60 MSSubClass_70 MSSubClass_75 MSSubClass_80 MSSubClass_85 MSSubClass_90
0 0 None 3 1Fam 3 1 3 Y Norm Norm ... 0 0 0 0 1 0 0 0 0 0
1 0 None 3 1Fam 3 4 3 Y Feedr Norm ... 0 0 0 0 0 0 0 0 0 0
2 0 None 3 1Fam 3 2 3 Y Norm Norm ... 0 0 0 0 1 0 0 0 0 0

3 rows × 167 columns

BldgType
get_feature_corr1('BldgType')

png

all_data['BldgType'] = all_data['BldgType'].astype(str)

all_data = pd.get_dummies(all_data, columns = ["BldgType"], prefix="BldgType")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... MSSubClass_70 MSSubClass_75 MSSubClass_80 MSSubClass_85 MSSubClass_90 BldgType_1Fam BldgType_2fmCon BldgType_Duplex BldgType_Twnhs BldgType_TwnhsE
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0

3 rows × 171 columns

HouseStyle
get_feature_corr1('HouseStyle')

png

all_data['HouseStyle'] = all_data['HouseStyle'].map({"2Story":"2Story", "1Story":"1Story", "1.5Fin":"1.5Story", "1.5Unf":"1.5Story", 
                                                     "SFoyer":"SFoyer", "SLvl":"SLvl", "2.5Unf":"2.5Story", "2.5Fin":"2.5Story"})

all_data = pd.get_dummies(all_data, columns = ["HouseStyle"], prefix="HouseStyle")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... BldgType_2fmCon BldgType_Duplex BldgType_Twnhs BldgType_TwnhsE HouseStyle_1.5Story HouseStyle_1Story HouseStyle_2.5Story HouseStyle_2Story HouseStyle_SFoyer HouseStyle_SLvl
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 1 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 1 0 0

3 rows × 176 columns

OverallQual
get_feature_corr1('OverallQual')

png

OverallCond
get_feature_corr1('OverallCond')

png

YearRemodAdd
get_feature_corr1('YearRemodAdd')

png

train['Remod_Diff'] = train['YearRemodAdd'] - train['YearBuilt']

plt.subplots(figsize =(40, 10))
sns.barplot(x="Remod_Diff", y="SalePrice", data=train);

png

all_data['Remod_Diff'] = all_data['YearRemodAdd'] - all_data['YearBuilt']

all_data.drop('YearRemodAdd', axis=1, inplace=True)
YearBuilt
get_feature_corr1('YearBuilt')

png

all_data['YearBuilt_Band'] = pd.cut(all_data['YearBuilt'], 7,labels=list('1234567'))
all_data['YearBuilt_Band'].unique()
all_data['YearBuilt_Band'] = all_data['YearBuilt_Band'].astype(int)
all_data.drop('YearBuilt',axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["YearBuilt_Band"], prefix="YearBuilt")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... HouseStyle_SFoyer HouseStyle_SLvl Remod_Diff YearBuilt_1 YearBuilt_2 YearBuilt_3 YearBuilt_4 YearBuilt_5 YearBuilt_6 YearBuilt_7
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 1 0 0 0 0 0 0 1

3 rows × 182 columns

Foundation
get_feature_corr1('Foundation')

png

all_data = pd.get_dummies(all_data, columns = ["Foundation"], prefix="Foundation")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... YearBuilt_4 YearBuilt_5 YearBuilt_6 YearBuilt_7 Foundation_BrkTil Foundation_CBlock Foundation_PConc Foundation_Slab Foundation_Stone Foundation_Wood
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 1 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 1 0 0 1 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 1 0 0 0

3 rows × 187 columns

Functional
get_feature_corr1('Functional')

png

all_data['Functional'] = all_data['Functional'].map({"Sev":1, "Maj2":2, "Maj1":3, "Mod":4, "Min2":5, "Min1":6, "Typ":7})
all_data['Functional'].unique()
array([7, 6, 3, 5, 4, 2, 1])
RoofStyle
get_feature_corr1('RoofStyle')

png

all_data = pd.get_dummies(all_data, columns = ["RoofStyle"], prefix="RoofStyle")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Foundation_PConc Foundation_Slab Foundation_Stone Foundation_Wood RoofStyle_Flat RoofStyle_Gable RoofStyle_Gambrel RoofStyle_Hip RoofStyle_Mansard RoofStyle_Shed
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 0 0 0 0 1 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 1 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 0 0 0 0 1 0 0 0 0

3 rows × 192 columns

RoofMatl
"""
Roof material.
"""

get_feature_corr1('RoofMatl')

png

all_data = pd.get_dummies(all_data, columns = ["RoofMatl"], prefix="RoofMatl")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... RoofStyle_Hip RoofStyle_Mansard RoofStyle_Shed RoofMatl_CompShg RoofMatl_Membran RoofMatl_Metal RoofMatl_Roll RoofMatl_Tar&Grv RoofMatl_WdShake RoofMatl_WdShngl
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 1 0 0 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 0 0 0 0

3 rows × 198 columns

Exterior1st & Exterior2nd
get_feature_corr1('Exterior1st')

png

get_feature_corr1('Exterior2nd')

png

def Exter2(col):
    if col['Exterior2nd'] == col['Exterior1st']:
        return 1
    else:
        return 0
    
all_data['ExteriorMatch_Flag'] = all_data.apply(Exter2, axis=1)
all_data.drop('Exterior2nd', axis=1, inplace=True)

all_data = pd.get_dummies(all_data, columns = ["Exterior1st"], prefix="Exterior1st")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Exterior1st_CemntBd Exterior1st_HdBoard Exterior1st_ImStucc Exterior1st_MetalSd Exterior1st_Plywood Exterior1st_Stone Exterior1st_Stucco Exterior1st_VinylSd Exterior1st_Wd Sdng Exterior1st_WdShing
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 1 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 1 0 0 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 1 0 0

3 rows × 212 columns

MasVnrType
get_feature_corr1('MasVnrType')

png

all_data = pd.get_dummies(all_data, columns = ["MasVnrType"], prefix="MasVnrType")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Exterior1st_Plywood Exterior1st_Stone Exterior1st_Stucco Exterior1st_VinylSd Exterior1st_Wd Sdng Exterior1st_WdShing MasVnrType_BrkCmn MasVnrType_BrkFace MasVnrType_None MasVnrType_Stone
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 0 1 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 1 0 0 0 1 0 0

3 rows × 215 columns

MasVnrArea
get_feature_corr('MasVnrArea')

png

  • 这个特征没啥意义,各个维度与这个特征的相关性都不是很大,变化都很大,且没有规律
all_data.drop('MasVnrArea', axis=1, inplace=True)
ExterQual
get_feature_corr1('ExterQual',order=['Fa','TA','Gd', 'Ex'])

png

all_data['ExterQual'] = all_data['ExterQual'].map({"Fa":1, "TA":2, "Gd":3, "Ex":4})
all_data['ExterQual'].unique()
array([3, 2, 4, 1])
ExterCond
"""
Evaluates the present condition of the material on the exterior.
"""
'\nEvaluates the present condition of the material on the exterior.\n'
get_feature_corr1('ExterCond',order=['Po','Fa',"TA",'Gd','Ex'])

png

all_data = pd.get_dummies(all_data, columns = ["ExterCond"], prefix="ExterCond")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Exterior1st_WdShing MasVnrType_BrkCmn MasVnrType_BrkFace MasVnrType_None MasVnrType_Stone ExterCond_Ex ExterCond_Fa ExterCond_Gd ExterCond_Po ExterCond_TA
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 1 0 0 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 1 0 0 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 1 0 0 0 0 0 0 1

3 rows × 218 columns

GarageType
"""
location of the Garage
"""
get_feature_corr1('GarageType')

png

  • 如果观察了该特征 ,其实可以发现这些现象值是有优劣关系的,但是售价并没有跟特征的优劣值进行对应,因此可以简单将这些特征进行one-hot转化也可以实现,
  • builtin 的车库房屋售价平均值最高
all_data = pd.get_dummies(all_data, columns = ["GarageType"], prefix="GarageType")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... ExterCond_Gd ExterCond_Po ExterCond_TA GarageType_2Types GarageType_Attchd GarageType_Basment GarageType_BuiltIn GarageType_CarPort GarageType_Detchd GarageType_None
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 1 0 1 0 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 1 0 1 0 0 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 1 0 1 0 0 0 0 0

3 rows × 224 columns

GarageYrBlt
"""
Year Garage was built
"""
get_feature_corr1('GarageYrBlt')

png

  • 年代越近,售价有逐步走高的趋势
plt.subplots(figsize =(50, 10))

sns.boxplot(x="GarageYrBlt", y="SalePrice", data=train);

png

plt.subplots(figsize =(50, 10))
sns.violinplot(x = 'GarageYrBlt', y = 'SalePrice', data = train,
               linewidth = 2, #线宽
               width = 0.8,   #箱之间的间隔比例
               palette = 'hls', #设置调色板
#                order = {'Thur', 'Fri', 'Sat','Sun'}, #筛选类别
#                scale = 'count',  #测度小提琴图的宽度: area-面积相同,count-按照样本数量决定宽度,width-宽度一样
               gridsize = 50, #设置小提琴图的平滑度,越高越平滑
               inner = 'box', #设置内部显示类型 --> 'box','quartile','point','stick',None
               #bw = 0.8      #控制拟合程度,一般可以不设置
               )
### 新学到的seaborn中的一些新图
<matplotlib.axes._subplots.AxesSubplot at 0x12e2cec50>

png

train['GarageYrBlt'].value_counts()
sns.distplot(train['GarageYrBlt'].dropna(), kde=True, bins=5, rug=True)
<matplotlib.axes._subplots.AxesSubplot at 0x12945c940>

png

all_data['GarageYrBlt_Band']  = pd.qcut(all_data['GarageYrBlt'],3,labels=list('123'))
# qcut是根据这些值的频率来选择箱子的均匀间隔,即每个箱子中含有的数的数量是相同的
# cut将根据值本身来选择箱子均匀间隔,即每个箱子的间距都是相同的
all_data['GarageYrBlt_Band'] = all_data['GarageYrBlt_Band'].astype(int)
all_data.drop(['GarageYrBlt'],axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["GarageYrBlt_Band"], prefix="GarageYrBlt")  # 默认删除掉原来的特征,因此不必删除旧值
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageType_2Types GarageType_Attchd GarageType_Basment GarageType_BuiltIn GarageType_CarPort GarageType_Detchd GarageType_None GarageYrBlt_1 GarageYrBlt_2 GarageYrBlt_3
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 1 0 0 0 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 1 0 0 0 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 1 0 0 0 0 0 0 0 1

3 rows × 226 columns

GarageFinish
get_feature_corr1('GarageFinish')

png

all_data = pd.get_dummies(all_data, columns = ["GarageFinish"], prefix="GarageFinish")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageType_CarPort GarageType_Detchd GarageType_None GarageYrBlt_1 GarageYrBlt_2 GarageYrBlt_3 GarageFinish_Fin GarageFinish_None GarageFinish_RFn GarageFinish_Unf
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 1 0 0 1 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 1 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 1 0 0 1 0

3 rows × 229 columns

GarageCars
"""
size of the Garage in car capacity 
默认是的数字不用其他操作,3辆车容量的车库售价最高,四辆车的转手频率较低(5个样本)
"""
get_feature_corr1('GarageCars')

png

GarageArea
get_feature_corr('GarageArea')

png

all_data['GarageArea_Band']  = pd.cut(all_data['GarageArea'],3,labels=list('123'))
all_data['GarageArea_Band'] =all_data['GarageArea_Band'].astype('int')
all_data.drop(['GarageArea'],axis=1,inplace=True)
all_data = pd.get_dummies(all_data, columns = ["GarageArea_Band"], prefix="GarageArea")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageYrBlt_1 GarageYrBlt_2 GarageYrBlt_3 GarageFinish_Fin GarageFinish_None GarageFinish_RFn GarageFinish_Unf GarageArea_1 GarageArea_2 GarageArea_3
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 1 0 0 1 0 0 1 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 1 0 0 0 1 0 1 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 1 0 0 1 0 0 1 0

3 rows × 231 columns

GarageQual
"""
Garage  quality
"""

get_feature_corr1('GarageQual',order=['Po','Fa','TA','Gd','Ex'])

png

  • "TA"的出售的价格有较高的值以及数量较为集中,而两端的数据却很分散,因此可以两边的特征进行合并
all_data['GarageQual'] = all_data['GarageQual'].map({"None":"None", "Po":"Low", "Fa":"Low", "TA":"TA", "Gd":"High", "Ex":"High"})
all_data['GarageQual'].unique()
array(['TA', 'Low', 'High', 'None'], dtype=object)
all_data = pd.get_dummies(all_data, columns = ["GarageQual"], prefix="GarageQual")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageFinish_None GarageFinish_RFn GarageFinish_Unf GarageArea_1 GarageArea_2 GarageArea_3 GarageQual_High GarageQual_Low GarageQual_None GarageQual_TA
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 1 0 0 1 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 1 0 1 0 0 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 1 0 0 1 0 0 0 0 1

3 rows × 234 columns

GarageCond
"""
Garage condition.
"""

get_feature_corr1('GarageCond',order=['Po','Fa','TA','Gd','Ex'])

png

  • 该特征与garage quality 特征处理方式类似
all_data['GarageCond']= all_data['GarageCond'].map({"None":'None',"Po":'Low','Fa':'Low','TA':'TA','Gd':'High','Ex':'High'})
all_data['GarageCond'].unique()
array(['TA', 'Low', 'None', 'High'], dtype=object)
all_data = pd.get_dummies(all_data, columns = ["GarageCond"], prefix="GarageCond")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageArea_2 GarageArea_3 GarageQual_High GarageQual_Low GarageQual_None GarageQual_TA GarageCond_High GarageCond_Low GarageCond_None GarageCond_TA
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 0 0 0 0 1 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 1 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 0 0 0 0 1 0 0 0 1

3 rows × 237 columns

WoodDeckSF
"""
Wood deck area in SF.
"""

get_feature_corr('WoodDeckSF')

png

  • high correlation with salesPrice
  • 很多的0值,需要单独创建一个特征,来说明是否伟木质材料构建
  • 对于非0值,进行封箱操作,然后转化为one-hot特征
def WoodDeckFlag(col):
    if col['WoodDeckSF'] == 0:
        return 1
    else:
        return 0
    
all_data['NoWoodDeck_Flag'] = all_data.apply(WoodDeckFlag, axis=1)  # new feature

all_data['WoodDeckSF_Band'] = pd.cut(all_data['WoodDeckSF'], 4,labels=list('1234'))  ## bin 

all_data['WoodDeckSF_Band'] = all_data['WoodDeckSF_Band'].astype(int)

all_data.drop('WoodDeckSF', axis=1, inplace=True)

all_data = pd.get_dummies(all_data, columns = ["WoodDeckSF_Band"], prefix="WoodDeckSF")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... GarageQual_TA GarageCond_High GarageCond_Low GarageCond_None GarageCond_TA NoWoodDeck_Flag WoodDeckSF_1 WoodDeckSF_2 WoodDeckSF_3 WoodDeckSF_4
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 0 0 0 1 1 1 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 1 0 0 0 1 0 1 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 0 0 0 1 1 1 0 0 0

3 rows × 241 columns

TotalPorchSF
"""
OpenPorchSF, EnclosedPorch, 3SsnPorch & ScreenPorch

I will sum these features together to create a total porch in square feet feature.
"""
all_data['TotalPorchSF'] = all_data['OpenPorchSF'] + all_data['OpenPorchSF'] + all_data['EnclosedPorch'] + all_data['3SsnPorch'] + all_data['ScreenPorch'] 
train['TotalPorchSF'] = train['OpenPorchSF'] + train['OpenPorchSF'] + train['EnclosedPorch'] + train['3SsnPorch'] + train['ScreenPorch']
get_feature_corr('TotalPorchSF')

png

def PorchFlag(col):
    if col['TotalPorchSF'] == 0:
        return 1
    else:
        return 0
    
all_data['NoPorch_Flag'] = all_data.apply(PorchFlag, axis=1)

all_data['TotalPorchSF_Band'] = pd.cut(all_data['TotalPorchSF'], 4,labels=list('1234'))
all_data['TotalPorchSF_Band'].unique()
all_data['TotalPorchSF_Band'] = all_data['TotalPorchSF_Band'].astype(int)

all_data.drop('TotalPorchSF', axis=1, inplace=True)

all_data = pd.get_dummies(all_data, columns = ["TotalPorchSF_Band"], prefix="TotalPorchSF")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... NoWoodDeck_Flag WoodDeckSF_1 WoodDeckSF_2 WoodDeckSF_3 WoodDeckSF_4 NoPorch_Flag TotalPorchSF_1 TotalPorchSF_2 TotalPorchSF_3 TotalPorchSF_4
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 1 0 0 0 0 1 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 1 0 0 0 1 1 0 0 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 1 0 0 0 0 1 0 0 0

3 rows × 246 columns

PoolArea
"""
PoolArea Pool area in square feet.
"""
get_feature_corr('PoolArea')

png

def PoolFlag(col):
    if col['PoolArea'] == 0:
        return 0
    else:
        return 1
    
all_data['HasPool_Flag'] = all_data.apply(PoolFlag, axis=1)
all_data.drop('PoolArea', axis=1, inplace=True)
PoolQC
"""
Pool quality.
"""
get_feature_corr1('PoolQC',order=['Fa','Gd','Ex'])

png

all_data['PoolQC'].value_counts()  #  总共8个数据带pool,其他的都是不带的,所以拿到的这个quality数据意义不大
None    2907
Gd         3
Ex         3
Fa         2
Name: PoolQC, dtype: int64
all_data.drop('PoolQC', axis=1, inplace=True)
Fence
'''
Fence: Fence quality
        
       GdPrv    Good Privacy
       MnPrv    Minimum Privacy
       GdWo Good Wood
       MnWw Minimum Wood/Wire
       NA   No Fence
'''

get_feature_corr1('Fence',order=['MnWw','GdWo','MnPrv','GdPrv'])

png

all_data = pd.get_dummies(all_data, columns = ["Fence"], prefix="Fence")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... TotalPorchSF_1 TotalPorchSF_2 TotalPorchSF_3 TotalPorchSF_4 HasPool_Flag Fence_GdPrv Fence_GdWo Fence_MnPrv Fence_MnWw Fence_None
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 1 0 0 0 0 0 0 0 0 1
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 1 0 0 0 0 0 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 1 0 0 0 0 0 0 0 0 1

3 rows × 249 columns

MSZoning
"""
MSZoning: Identifies the general zoning classification of the sale.
        
       A    Agriculture
       C    Commercial
       FV   Floating Village Residential
       I    Industrial
       RH   Residential High Density
       RL   Residential Low Density
       RP   Residential Low Density Park 
       RM   Residential Medium Density
"""
get_feature_corr1('MSZoning')
all_data['MSZoning'].value_counts()

png

RL         2265
RM          460
FV          139
RH           26
C (all)      25
Name: MSZoning, dtype: int64
all_data = pd.get_dummies(all_data, columns = ["MSZoning"], prefix="MSZoning")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Fence_GdPrv Fence_GdWo Fence_MnPrv Fence_MnWw Fence_None MSZoning_C (all) MSZoning_FV MSZoning_RH MSZoning_RL MSZoning_RM
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 1 0 0 0 1 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 1 0 0 0 1 0
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 1 0 0 0 1 0

3 rows × 253 columns

Neighborhood
"""
this feature has lots of values,and SalePrice varies a lot in the values of the feature,
we  just use one-hot to transform this feature

"""

get_feature_corr1('Neighborhood')
all_data = pd.get_dummies(all_data, columns = ["Neighborhood"], prefix="Neighborhood")
all_data.head(3)

png

3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Condition1 Condition2 Electrical ... Neighborhood_NoRidge Neighborhood_NridgHt Neighborhood_OldTown Neighborhood_SWISU Neighborhood_Sawyer Neighborhood_SawyerW Neighborhood_Somerst Neighborhood_StoneBr Neighborhood_Timber Neighborhood_Veenker
0 0 None 3 3 1 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 0 0 0
1 0 None 3 3 4 3 Y Feedr Norm SBrkr ... 0 0 0 0 0 0 0 0 0 1
2 0 None 3 3 2 3 Y Norm Norm SBrkr ... 0 0 0 0 0 0 0 0 0 0

3 rows × 277 columns

Condition1 & Condition2
print('condition1')
get_feature_corr1('Condition1')
print('condition2')
get_feature_corr1('Condition2')
condition1

png

condition2

png

'''
Condition1: Proximity to various conditions
       Artery   Adjacent to arterial street
       Feedr    Adjacent to feeder street
       Norm Normal
       RRNn Within 200' of North-South Railroad
       RRAn Adjacent to North-South Railroad
       PosN Near positive off-site feature--park, greenbelt, etc.
       PosA Adjacent to postive off-site feature
       RRNe Within 200' of East-West Railroad
       RRAe Adjacent to East-West Railroad

'''
all_data['Condition1'] = all_data['Condition1'].map({"Norm":"Norm", "Feedr":"Street", "PosN":"Pos", "Artery":"Street", "RRAe":"Train",
                                                    "RRNn":"Train", "RRAn":"Train", "PosA":"Pos", "RRNe":"Train"})
all_data['Condition2'] = all_data['Condition2'].map({"Norm":"Norm", "Feedr":"Street", "PosN":"Pos", "Artery":"Street", "RRAe":"Train",
                                                    "RRNn":"Train", "RRAn":"Train", "PosA":"Pos", "RRNe":"Train"})
def ConditionMatch(col):
    if col['Condition1'] == col['Condition2']:
        return 0
    else:
        return 1
    
all_data['Diff2ndCondition_Flag'] = all_data.apply(ConditionMatch, axis=1)
all_data.drop('Condition2', axis=1, inplace=True)

all_data = pd.get_dummies(all_data, columns = ["Condition1"], prefix="Condition1")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual ... Neighborhood_SawyerW Neighborhood_Somerst Neighborhood_StoneBr Neighborhood_Timber Neighborhood_Veenker Diff2ndCondition_Flag Condition1_Norm Condition1_Pos Condition1_Street Condition1_Train
0 0 None 3 3 1 3 Y SBrkr 0 3 ... 0 0 0 0 0 0 1 0 0 0
1 0 None 3 3 4 3 Y SBrkr 0 2 ... 0 0 0 0 1 1 0 0 1 0
2 0 None 3 3 2 3 Y SBrkr 0 3 ... 0 0 0 0 0 0 1 0 0 0

3 rows × 280 columns

LotFrontage
"""
Linear feet of street connected to property.
"""

get_feature_corr('LotFrontage')

png

  • 该特征与saleprice 没有明显的相关性,可以考虑去掉该特征
LotArea
'''
Lot size in square feet.
'''
get_feature_corr('LotArea')

png

  • 该特征与saleprice有着明显的相关性,且该特征与saleprice呈现一个正偏态(峰左移,右偏,正偏)
all_data['LotArea_Band'] = pd.qcut(all_data['LotArea'], 8,labels=list('12345678'))  # 针对分布不均匀的特征使用qcut进行封箱
all_data['LotArea_Band'].unique()
all_data['LotArea_Band'] = all_data['LotArea_Band'].astype(int)

all_data.drop('LotArea', axis=1, inplace=True)

all_data = pd.get_dummies(all_data, columns = ["LotArea_Band"], prefix="LotArea")
all_data.head(3)
3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual ... Condition1_Street Condition1_Train LotArea_1 LotArea_2 LotArea_3 LotArea_4 LotArea_5 LotArea_6 LotArea_7 LotArea_8
0 0 None 3 3 1 3 Y SBrkr 0 3 ... 0 0 0 0 1 0 0 0 0 0
1 0 None 3 3 4 3 Y SBrkr 0 2 ... 1 0 0 0 0 0 1 0 0 0
2 0 None 3 3 2 3 Y SBrkr 0 3 ... 0 0 0 0 0 0 0 1 0 0

3 rows × 287 columns

LotShape
"""
LotShape: General shape of property

       Reg  Regular 
       IR1  Slightly irregular
       IR2  Moderately Irregular
       IR3  Irregula
该特征能够明显的影响售价,在国外,不仅仅要有大的面积数,而且尺寸也要合理,否则也很能卖出高价 
"""
get_feature_corr1('LotShape')

png

all_data = pd.get_dummies(all_data, columns = ["LotShape"], prefix="LotShape")
all_data.head(3)
print("地皮的形状主要集中在Reg,Reg1两个值里面,而且salerice在不同的属性里面变化很大")
地皮的形状主要集中在Reg,Reg1两个值里面,而且salerice在不同的属性里面变化很大
LandContour
"""
LandContour: Flatness of the property

       Lvl  Near Flat/Level 
       Bnk  Banked - Quick and significant rise from street grade to building
       HLS  Hillside - Significant slope from side to side
       Low  Depression

"""
get_feature_corr1('LandContour')
all_data = pd.get_dummies(all_data, columns = ["LandContour"], prefix="LandContour")
all_data.head(3)

png

3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual ... LotArea_7 LotArea_8 LotShape_IR1 LotShape_IR2 LotShape_IR3 LotShape_Reg LandContour_Bnk LandContour_HLS LandContour_Low LandContour_Lvl
0 0 None 3 3 1 3 Y SBrkr 0 3 ... 0 0 0 0 0 1 0 0 0 1
1 0 None 3 3 4 3 Y SBrkr 0 2 ... 0 0 0 0 0 1 0 0 0 1
2 0 None 3 3 2 3 Y SBrkr 0 3 ... 0 0 1 0 0 0 0 0 0 1

3 rows × 293 columns

LotConfig
"""
LotConfig: Lot configuration

       Inside   Inside lot 内部
       Corner   Corner lot 角落
       CulDSac  Cul-de-sac 死胡同
       FR2  Frontage on 2 sides of property 前排
       FR3  Frontage on 3 sides of property  前排
房子周围的环境 
"""
get_feature_corr1('LotConfig')
all_data['LotConfig'] = all_data['LotConfig'].map({"Inside":"Inside", "FR2":"FR", "Corner":"Corner", "CulDSac":"CulDSac", "FR3":"FR"})

all_data = pd.get_dummies(all_data, columns = ["LotConfig"], prefix="LotConfig")
all_data.head(3)

png

3SsnPorch Alley BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual ... LotShape_IR3 LotShape_Reg LandContour_Bnk LandContour_HLS LandContour_Low LandContour_Lvl LotConfig_Corner LotConfig_CulDSac LotConfig_FR LotConfig_Inside
0 0 None 3 3 1 3 Y SBrkr 0 3 ... 0 1 0 0 0 1 0 0 0 1
1 0 None 3 3 4 3 Y SBrkr 0 2 ... 0 1 0 0 0 1 0 0 1 0
2 0 None 3 3 2 3 Y SBrkr 0 3 ... 0 0 0 0 0 1 0 0 0 1

3 rows × 296 columns

LandSlope
"""
LandSlope: Slope of property
       Gtl  Gentle slope
       Mod  Moderate Slope
       Sev  Severe Slope
"""
get_feature_corr1('LandSlope')

png

all_data['LandSlope'] = all_data['LandSlope'].map({"Gtl":1, "Mod":0, "Sev":0})
'''
Mod and Sev saleprice 处于同一区间,可以将两者合并
'''
'\nMod and Sev saleprice 处于同一区间,可以将两者合并\n'
all_data['LandSlope'].value_counts()
1    2774
0     141
Name: LandSlope, dtype: int64
Street
get_feature_corr1('Street')

png

  • Pave中价格变化很大,且Grvl数量太少,所以该特征意义不大,直接去掉
all_data.drop('Street', axis=1, inplace=True)
Alley
get_feature_corr1('Alley')

png

all_data['Alley'].value_counts()
None    2717
Grvl     120
Pave      78
Name: Alley, dtype: int64
all_data = pd.get_dummies(all_data, columns = ["Alley"], prefix="Alley")
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual FireplaceQu ... LandContour_HLS LandContour_Low LandContour_Lvl LotConfig_Corner LotConfig_CulDSac LotConfig_FR LotConfig_Inside Alley_Grvl Alley_None Alley_Pave
0 0 3 3 1 3 Y SBrkr 0 3 0 ... 0 0 1 0 0 0 1 0 1 0
1 0 3 3 4 3 Y SBrkr 0 2 3 ... 0 0 1 0 0 1 0 0 1 0
2 0 3 3 2 3 Y SBrkr 0 3 3 ... 0 0 1 0 0 0 1 0 1 0

3 rows × 297 columns

PvaeDrive
"""
PavedDrive: Paved driveway

       Y    Paved 价格差异较大,且没有明显的顺序关系,需要转化为one-hot特征
       P    Partial Pavement
       N    Dirt/Gravel
"""
get_feature_corr1('PavedDrive')

png

all_data=pd.get_dummies(all_data,columns=['PavedDrive'],prefix='PavedDrive')
all_data.head()
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual FireplaceQu ... LotConfig_Corner LotConfig_CulDSac LotConfig_FR LotConfig_Inside Alley_Grvl Alley_None Alley_Pave PavedDrive_N PavedDrive_P PavedDrive_Y
0 0 3 3 1 3 Y SBrkr 0 3 0 ... 0 0 0 1 0 1 0 0 0 1
1 0 3 3 4 3 Y SBrkr 0 2 3 ... 0 0 1 0 0 1 0 0 0 1
2 0 3 3 2 3 Y SBrkr 0 3 3 ... 0 0 0 1 0 1 0 0 0 1
3 0 3 4 1 2 Y SBrkr 272 2 4 ... 1 0 0 0 0 1 0 0 0 1
4 0 4 3 3 3 Y SBrkr 0 3 3 ... 0 0 1 0 0 1 0 0 0 1

5 rows × 299 columns

Heating
get_feature_corr1('Heating')

png

"""
大量集中在GasA,其余的数据量非常小,可以转化为天然气供暖,和其他方式供暖
"""
all_data['Heating']  = all_data['Heating'].map({'GasA':1,'GasW':0,'Grav':0,'Wall':0,'OthW':0,'Floor':0})
all_data.drop('Heating', axis=1, inplace=True)
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir Electrical EnclosedPorch ExterQual FireplaceQu ... LotConfig_Corner LotConfig_CulDSac LotConfig_FR LotConfig_Inside Alley_Grvl Alley_None Alley_Pave PavedDrive_N PavedDrive_P PavedDrive_Y
0 0 3 3 1 3 Y SBrkr 0 3 0 ... 0 0 0 1 0 1 0 0 0 1
1 0 3 3 4 3 Y SBrkr 0 2 3 ... 0 0 1 0 0 1 0 0 0 1
2 0 3 3 2 3 Y SBrkr 0 3 3 ... 0 0 0 1 0 1 0 0 0 1

3 rows × 298 columns

HeatingQC
"""
Heating quality and condition.
"""
get_feature_corr1('HeatingQC',order=['Po','Fa','TA','Gd','Ex'])

png

all_data['HeatingQC'] = all_data['HeatingQC'].map({"Po":1, "Fa":2, "TA":3, "Gd":4, "Ex":5})
all_data['HeatingQC'].unique()
array([5, 4, 3, 2, 1])
CentralAir
"""
Central air conditioning.

"""
get_feature_corr1('CentralAir')

png

all_data['CentralAir'] = all_data['CentralAir'].map({"Y":1,"N":0})
Electrical
"""
Electrical system.

"""

get_feature_corr1('Electrical')

png

all_data['Electrical'] = all_data['Electrical'].map({'SBrkr':'SBrkr','FuseF':'Fuse','FuseA':'Fuse','FuseP':'Fuse','Mix':'Mix'})
all_data = pd.get_dummies(all_data, columns = ["Electrical"], prefix="Electrical")
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir EnclosedPorch ExterQual FireplaceQu Fireplaces ... LotConfig_Inside Alley_Grvl Alley_None Alley_Pave PavedDrive_N PavedDrive_P PavedDrive_Y Electrical_Fuse Electrical_Mix Electrical_SBrkr
0 0 3 3 1 3 1 0 3 0 0 ... 1 0 1 0 0 0 1 0 0 1
1 0 3 3 4 3 1 0 2 3 1 ... 0 0 1 0 0 0 1 0 0 1
2 0 3 3 2 3 1 0 3 3 1 ... 1 0 1 0 0 0 1 0 0 1

3 rows × 300 columns

all_data['MiscFeature'].value_counts()  #
None    2810
Shed      95
Gar2       5
Othr       4
TenC       1
Name: MiscFeature, dtype: int64
get_feature_corr1('MiscFeature')
'''
有效数据太少,剔除该特征
'''

png

'\n有效数据太少,剔除该特征\n'
get_feature_corr1('MiscVal')

png

all_data['MiscVal'].value_counts()
"""
有效数据过少,剔除该特征
"""
'\n有效数据过少,剔除该特征\n'
all_data.drop(['MiscVal','MiscFeature'],axis=1,inplace=True)
MoSold and YrSold
"""
month sold,Year Sold
"""
get_feature_corr1('MoSold')

png

get_feature_corr1('YrSold')

png

all_data = pd.get_dummies(all_data, columns = ["MoSold"], prefix="MoSold")
all_data = pd.get_dummies(all_data,columns=['YrSold'],prefix='YrSold')
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir EnclosedPorch ExterQual FireplaceQu Fireplaces ... MoSold_8 MoSold_9 MoSold_10 MoSold_11 MoSold_12 YrSold_2006 YrSold_2007 YrSold_2008 YrSold_2009 YrSold_2010
0 0 3 3 1 3 1 0 3 0 0 ... 0 0 0 0 0 0 0 1 0 0
1 0 3 3 4 3 1 0 2 3 1 ... 0 0 0 0 0 0 1 0 0 0
2 0 3 3 2 3 1 0 3 3 1 ... 0 1 0 0 0 0 0 1 0 0

3 rows × 313 columns

SaleType
"""
SaleType: Type of sale
        
       WD   Warranty Deed - Conventional
       CWD  Warranty Deed - Cash
       VWD  Warranty Deed - VA Loan
       New  Home just constructed and sold
       COD  Court Officer Deed/Estate
       Con  Contract 15% Down payment regular terms
       ConLw    Contract Low Down payment and low interest
       ConLI    Contract Low Interest
       ConLD    Contract Low Down
       Oth  Other

"""
get_feature_corr1('SaleType')

png

all_data['SaleType'] = all_data['SaleType'].map({'WD':"WD",'New':"New",'COD':"COD",'CWD':'Oth','ConLD':'Oth','ConLI':'Oth',
                                                "ConLW":'Oth','Con':'Oth','Oth':'Oth'})
all_data=  pd.get_dummies(all_data,columns=['SaleType'],prefix='SaleType')
all_data.head()
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir EnclosedPorch ExterQual FireplaceQu Fireplaces ... MoSold_12 YrSold_2006 YrSold_2007 YrSold_2008 YrSold_2009 YrSold_2010 SaleType_COD SaleType_New SaleType_Oth SaleType_WD
0 0 3 3 1 3 1 0 3 0 0 ... 0 0 0 1 0 0 0 0 0 1
1 0 3 3 4 3 1 0 2 3 1 ... 0 0 1 0 0 0 0 0 0 1
2 0 3 3 2 3 1 0 3 3 1 ... 0 0 0 1 0 0 0 0 0 1
3 0 3 4 1 2 1 272 2 4 1 ... 0 1 0 0 0 0 0 0 0 1
4 0 4 3 3 3 1 0 3 3 1 ... 1 0 0 1 0 0 0 0 0 1

5 rows × 316 columns

SaleCondition
"""
Condition of sale.

"""

get_feature_corr1('SaleCondition')

png

all_data = pd.get_dummies(all_data, columns = ["SaleCondition"], prefix="SaleCondition")
all_data.head(3)
3SsnPorch BedroomAbvGr BsmtCond BsmtExposure BsmtQual CentralAir EnclosedPorch ExterQual FireplaceQu Fireplaces ... SaleType_COD SaleType_New SaleType_Oth SaleType_WD SaleCondition_Abnorml SaleCondition_AdjLand SaleCondition_Alloca SaleCondition_Family SaleCondition_Normal SaleCondition_Partial
0 0 3 3 1 3 1 0 3 0 0 ... 0 0 0 1 0 0 0 0 1 0
1 0 3 3 4 3 1 0 2 3 1 ... 0 0 0 1 0 0 0 0 1 0
2 0 3 3 2 3 1 0 3 3 1 ... 0 0 0 1 0 0 0 0 1 0

3 rows × 321 columns

目标值转换

  • 与分类算法不同,回归是用算法拟合连续值
  • 通常需要对目标值进行分布进行分析,机器学习的算法对于正态分布的数据一般都有很高的拟合度,如果目标值为偏正态分布,需要将目标值转化为正态分布
from scipy.stats import skew, norm
plt.subplots(figsize=(15,12))
g = sns.distplot(train['SalePrice'],fit=norm,label="Skewness:%.2f" % (train['SalePrice'].skew()))
g.legend(loc='best')
<matplotlib.legend.Legend at 0x12f5f5cc0>

png

  • 目标变量为正偏态,可以是用numpy中的函数,将其转化
train["SalePrice"] = np.log1p(train["SalePrice"])
y_train = train["SalePrice"]

#Check the new distribution 
plt.subplots(figsize=(15,10))
g = sns.distplot(train['SalePrice'], fit=norm, label = "Skewness : %.2f"%(train['SalePrice'].skew()));
g = g.legend(loc="best")

png

处理数据中偏态的特征
numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index

# Check how skewed they are
skewed_feats = all_data[numeric_feats].apply(lambda x: skew(x.dropna())).sort_values(ascending=False)

plt.subplots(figsize =(65, 20))
skewed_feats.plot(kind='bar');

png


from scipy.special import boxcox1p

skewness = skewed_feats[abs(skewed_feats) > 0.5]

skewed_features = skewness.index
lam = 0.15
for feat in skewed_features:
    all_data[feat] = boxcox1p(all_data[feat], lam)

print(skewness.shape[0],  "skewed numerical features have been Box-Cox transformed")
294 skewed numerical features have been Box-Cox transformed

准备模型训练的数据

train = all_data[:ntrain]
test = all_data[ntrain:]
print(train.shape)
print(test.shape)
(1456, 321)
(1459, 321)
y_train.shape
(1456,)
feature importance
import xgboost as xgb

model = xgb.XGBRegressor()
model.fit(train, y_train)


# Sort feature importances from GBC model trained earlier
indices = np.argsort(model.feature_importances_)[::-1]
indices = indices[:75]

# Visualise these with a barplot
plt.subplots(figsize=(20, 15))
g = sns.barplot(y=train.columns[indices], x = model.feature_importances_[indices], orient='h')
g.set_xlabel("Relative importance",fontsize=12)
g.set_ylabel("Features",fontsize=12)
g.tick_params(labelsize=9)
g.set_title("XGB feature importance");
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
  if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:588: FutureWarning: Series.base is deprecated and will be removed in a future version
  data.base is not None and isinstance(data, np.ndarray) \


[11:04:46] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.

png

xgb_train = train.copy()
xgb_test = test.copy()
from sklearn.feature_selection import SelectFromModel

xgb_feat_red = SelectFromModel(model,prefit=True)
# reduce estimation validation and test datasets
xgb_train = xgb_feat_red.transform(xgb_train)
xgb_test = xgb_feat_red.transform(xgb_test)
print('X_train: ', xgb_train.shape, '\nX_test: ', xgb_test.shape)
X_train:  (1456, 47) 
X_test:  (1459, 47)

from sklearn import model_selection

X_train, X_test, Y_train, Y_test = model_selection.train_test_split(xgb_train, y_train, test_size=0.3, random_state=42)

# X_train = predictor features for estimation dataset
# X_test = predictor variables for validation dataset
# Y_train = target variable for the estimation dataset
# Y_test = target variable for the estimation dataset

print('X_train: ', X_train.shape, '\nX_test: ', X_test.shape, '\nY_train: ', Y_train.shape, '\nY_test: ', Y_test.shape)

X_train:  (1019, 47) 
X_test:  (437, 47) 
Y_train:  (1019,) 
Y_test:  (437,)
X_train
array([[0.73046315, 3.        , 0.73046315, ..., 0.        , 0.        ,
        0.        ],
       [0.73046315, 3.        , 0.73046315, ..., 0.        , 0.        ,
        0.        ],
       [1.19431764, 2.        , 0.73046315, ..., 0.        , 0.        ,
        0.        ],
       ...,
       [1.8203341 , 3.        , 0.73046315, ..., 0.73046315, 0.        ,
        0.        ],
       [0.73046315, 3.        , 0.73046315, ..., 0.        , 0.        ,
        0.        ],
       [1.54096276, 3.        , 0.73046315, ..., 0.        , 0.        ,
        0.        ]])

训练不同的模型

# 从sklearn 导入不同的回归模型
from sklearn.linear_model import ElasticNet, Lasso,  BayesianRidge, LassoLarsIC
from sklearn.ensemble import RandomForestRegressor,  GradientBoostingRegressor, ExtraTreesRegressor
from sklearn.kernel_ridge import KernelRidge
import xgboost as xgb
print('Algorithm packages imported!')
Algorithm packages imported!
# Model selection packages used for sampling dataset and optimising parameters
from sklearn import model_selection
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ShuffleSplit
print('Model selection packages imported!')
Model selection packages imported!
models = [KernelRidge(),ElasticNet(),Lasso(),GradientBoostingRegressor(),BayesianRidge(),LassoLarsIC(),RandomForestRegressor(),xgb.XGBRegressor()]
# 随机取样,其实可以使用正常的split,然后选择里面的shuffle = True
# https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
shuff =ShuffleSplit(n_splits=5,test_size=0.2,random_state=42)
# 创建一个数据框,用于保存模型的指标
columns = ['Name','Parameters','Train mean_squared_error','Test mean_squared_error']
before_model_compare = pd.DataFrame(columns=columns)
# 将模型的参数以及结果添加到DataFrame中
row_index=0
for alg in models:
    model_name = alg.__class__.__name__
    before_model_compare.loc[row_index,'Name'] = model_name
    before_model_compare.loc[row_index,'Parameters'] = str(alg.get_params())
    alg.fit(X_train,Y_train)
    # for cross_validation  but the results are negative,we need to convert it to postive,均方误差
    training_results = np.sqrt((-cross_val_score(alg,X_train,Y_train,cv=shuff,scoring='neg_mean_squared_error')).mean())
    test_results = np.sqrt(((Y_test-alg.predict(X_test))**2).mean())
    before_model_compare.loc[row_index,"Train mean_squared_error"] = training_results*100
    before_model_compare.loc[row_index,'Test mean_squared_error'] = test_results*100
    row_index+=1
    print(row_index,model_name,"trained>>>>")

    
decimals = 3
before_model_compare['Train mean_squared_error'] = before_model_compare['Train mean_squared_error'].apply(lambda x:round(x,decimals))
before_model_compare['Test mean_squared_error'] = before_model_compare['Train mean_squared_error'].apply(lambda x:round(x,decimals))
before_model_compare
    
1 KernelRidge trained>>>>
2 ElasticNet trained>>>>
3 Lasso trained>>>>
4 GradientBoostingRegressor trained>>>>
5 BayesianRidge trained>>>>
6 LassoLarsIC trained>>>>
7 RandomForestRegressor trained>>>>
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.


/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
  if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
  if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
  if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
  if getattr(data, 'base', None) is not None and \
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
  if getattr(data, 'base', None) is not None and \


[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
[12:04:14] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
8 XGBRegressor trained>>>>
Name Parameters Train mean_squared_error Test mean_squared_error
0 KernelRidge {'alpha': 1, 'coef0': 1, 'degree': 3, 'gamma':... 31.424 31.424
1 ElasticNet {'alpha': 1.0, 'copy_X': True, 'fit_intercept'... 23.245 23.245
2 Lasso {'alpha': 1.0, 'copy_X': True, 'fit_intercept'... 28.008 28.008
3 GradientBoostingRegressor {'alpha': 0.9, 'criterion': 'friedman_mse', 'i... 12.381 12.381
4 BayesianRidge {'alpha_1': 1e-06, 'alpha_2': 1e-06, 'compute_... 11.118 11.118
5 LassoLarsIC {'copy_X': True, 'criterion': 'aic', 'eps': 2.... 11.818 11.818
6 RandomForestRegressor {'bootstrap': True, 'criterion': 'mse', 'max_d... 14.299 14.299
7 XGBRegressor {'base_score': 0.5, 'booster': 'gbtree', 'cols... 12.466 12.466
优化参数
  • 开始的时候,我们准备了不同模型简单的看了模型的评价以及训练结果
  • 实际上,这些模型都需要进一步的参数优化
  • 下一步需要是用GridSearch进行参数的调整
models = [KernelRidge(),ElasticNet(),Lasso(),GradientBoostingRegressor(),BayesianRidge(),LassoLarsIC(),RandomForestRegressor(),
         xgb.XGBRegressor()]
KR_param_grid = {'alpha': [0.1], 'coef0': [100], 'degree': [1], 'gamma': [None], 'kernel': ['polynomial']}
EN_param_grid = {'alpha': [0.001], 'copy_X': [True], 'l1_ratio': [0.6], 'fit_intercept': [True], 'normalize': [False], 
                         'precompute': [False], 'max_iter': [300], 'tol': [0.001], 'selection': ['random'], 'random_state': [None]}
LASS_param_grid = {'alpha': [0.0005], 'copy_X': [True], 'fit_intercept': [True], 'normalize': [False], 'precompute': [False], 
                    'max_iter': [300], 'tol': [0.01], 'selection': ['random'], 'random_state': [None]}
GB_param_grid = {'loss': ['huber'], 'learning_rate': [0.1], 'n_estimators': [300], 'max_depth': [3], 
                                        'min_samples_split': [0.0025], 'min_samples_leaf': [5]}
BR_param_grid = {'n_iter': [200], 'tol': [0.00001], 'alpha_1': [0.00000001], 'alpha_2': [0.000005], 'lambda_1': [0.000005], 
                 'lambda_2': [0.00000001], 'copy_X': [True]}
LL_param_grid = {'criterion': ['aic'], 'normalize': [True], 'max_iter': [100], 'copy_X': [True], 'precompute': ['auto'], 'eps': [0.000001]}
RFR_param_grid = {'n_estimators': [50], 'max_features': ['auto'], 'max_depth': [None], 'min_samples_split': [5], 'min_samples_leaf': [2]}
XGB_param_grid = {'max_depth': [3], 'learning_rate': [0.1], 'n_estimators': [300], 'booster': ['gbtree'], 'gamma': [0], 'reg_alpha': [0.1],
                  'reg_lambda': [0.7], 'max_delta_step': [0], 'min_child_weight': [1], 'colsample_bytree': [0.5], 'colsample_bylevel': [0.2],
                  'scale_pos_weight': [1]}
params_grid = [KR_param_grid, EN_param_grid, LASS_param_grid, GB_param_grid, BR_param_grid, LL_param_grid, RFR_param_grid, XGB_param_grid]

after_model_compare = pd.DataFrame(columns=columns)
row_index= 0

for alg in models:
    gs_alg = GridSearchCV(alg,param_grid=params_grid[0],cv=shuff,scoring='neg_mean_squared_error',n_jobs=-1)
    params_grid.pop(0)
    
    
    model_name = alg.__class__.__name__
    after_model_compare.loc[row_index,'Name'] = model_name
    gs_alg.fit(X_train,Y_train)
    gs_best=gs_alg.best_estimator_
    after_model_compare.loc[row_index,"Parameters"] = str(gs_alg.best_params_)
    after_training_results = np.sqrt(-gs_alg.best_score_)
    after_test_results = np.sqrt((Y_test-gs_alg.predict(X_test)**2).mean())
    after_model_compare.loc[row_index,"Train mean_squared_error"] = after_training_results*100
    after_model_compare.loc[row_index,'Test mean_squared_error']= after_test_results*100
    row_index+=1
    print(row_index,model_name,"trained>>>>>")


    
decimals = 3
after_model_compare['Train mean_squared_error'] = after_model_compare['Train mean_squared_error'].apply(lambda x:round(x,decimals))
after_model_compare['Test mean_squared_error'] = after_model_compare['Train mean_squared_error'].apply(lambda x:round(x,decimals))
after_model_compare
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt


1 KernelRidge trained>>>>>
2 ElasticNet trained>>>>>
3 Lasso trained>>>>>


/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt


4 GradientBoostingRegressor trained>>>>>
5 BayesianRidge trained>>>>>
6 LassoLarsIC trained>>>>>


/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/ipykernel_launcher.py:33: RuntimeWarning: invalid value encountered in sqrt
/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
  if getattr(data, 'base', None) is not None and \


7 RandomForestRegressor trained>>>>>
[19:23:22] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
8 XGBRegressor trained>>>>>
Name Parameters Train mean_squared_error Test mean_squared_error
0 KernelRidge {'alpha': 0.1, 'coef0': 100, 'degree': 1, 'gam... 11.140 11.140
1 ElasticNet {'alpha': 0.001, 'copy_X': True, 'fit_intercep... 11.234 11.234
2 Lasso {'alpha': 0.0005, 'copy_X': True, 'fit_interce... 11.203 11.203
3 GradientBoostingRegressor {'learning_rate': 0.1, 'loss': 'huber', 'max_d... 11.966 11.966
4 BayesianRidge {'alpha_1': 1e-08, 'alpha_2': 5e-06, 'copy_X':... 11.118 11.118
5 LassoLarsIC {'copy_X': True, 'criterion': 'aic', 'eps': 1e... 11.818 11.818
6 RandomForestRegressor {'max_depth': None, 'max_features': 'auto', 'm... 13.735 13.735
7 XGBRegressor {'booster': 'gbtree', 'colsample_bylevel': 0.2... 11.964 11.964

stacking method

  • 准备一系列的算法模型
  • 将train训练数据分割为训练数据和验证数据(X_trian,Y_train,X_test,Y_test)
  • 在X_train数据集中进行算法拟合,然后将训练出来的模型去拟合X_test(验证集),将模型拟合出的验证集的结果和实际的Y_test组成的新的训练数据(new_train datasets)
  • 将训练出来的模型去拟合test数据集,得到每个模型预测的结果,组成醒的test数据集,new_test dataset
  • 用一个相对简单或者使用不同的模型(meta-model),比如说lasso,将新的训练进行拟合,然后将拟合后的模型预测新的测试集new_test_dataset,得到新的模型
  • 将新的模型去拟合新的测试集(new_test_dataset),得到预测的结果
models  = [KernelRidge(),ElasticNet(),Lasso(),GradientBoostingRegressor(),BayesianRidge(),LassoLarsIC(),RandomForestRegressor(),xgb.XGBRegressor()]
names = ['KernelRidge','ElasticNet','Lasso','GradientBoostingRegressor','BayesianRidge','LassoLarsIC','RandomForest','XGBoost']
params_grid = [KR_param_grid, EN_param_grid, LASS_param_grid, GB_param_grid, BR_param_grid, LL_param_grid, RFR_param_grid, XGB_param_grid]
stacked_validation_train = pd.DataFrame()
stacked_test_train = pd.DataFrame()

row_index= 0

for alg in models:
    gs_alg = GridSearchCV(alg,param_grid=params_grid[0],cv=shuff,scoring='neg_mean_squared_error',n_jobs=-1)
    params_grid.pop(0)
    gs_alg.fit(X_train,Y_train)
    gs_best = gs_alg.best_estimator_
    stacked_validation_train.insert(loc= row_index,column=names[0],value=gs_best.predict(X_test))
    """  dataFrme insert (loc 表示的是列的序号,column 列名,value 插入的内容)"""
    print(row_index+1,alg.__class__.__name__,"将验证集的预测的结果堆砌,组成新的训练集")
    stacked_test_train.insert(loc=row_index,column=names[0],value=gs_best.predict(xgb_test))
    print(row_index+1,alg.__class__.__name__,"将测试集的预测的结果堆砌,组成新的测试集")
    print("---"*50)
    names.pop(0)
    row_index+=1
    
print("第一层数据处理完成,新的训练集与测试集完成")
    
    
    
    
    
    
    
    
    
    
1 KernelRidge 将验证集的预测的结果堆砌,组成新的训练集
1 KernelRidge 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
2 ElasticNet 将验证集的预测的结果堆砌,组成新的训练集
2 ElasticNet 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
3 Lasso 将验证集的预测的结果堆砌,组成新的训练集
3 Lasso 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
4 GradientBoostingRegressor 将验证集的预测的结果堆砌,组成新的训练集
4 GradientBoostingRegressor 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
5 BayesianRidge 将验证集的预测的结果堆砌,组成新的训练集
5 BayesianRidge 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
6 LassoLarsIC 将验证集的预测的结果堆砌,组成新的训练集
6 LassoLarsIC 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
7 RandomForestRegressor 将验证集的预测的结果堆砌,组成新的训练集
7 RandomForestRegressor 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
[15:23:01] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
8 XGBRegressor 将验证集的预测的结果堆砌,组成新的训练集
8 XGBRegressor 将测试集的预测的结果堆砌,组成新的测试集
------------------------------------------------------------------------------------------------------------------------------------------------------
第一层数据处理完成,新的训练集与测试集完成


/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
  if getattr(data, 'base', None) is not None and \
print(stacked_validation_train.shape)
stacked_validation_train.head()
# Y_test的数据结果
(437, 8)
KernelRidge ElasticNet Lasso GradientBoostingRegressor BayesianRidge LassoLarsIC RandomForest XGBoost
0 12.096814 12.095574 12.095347 12.103610 12.095675 12.104932 12.170897 12.084927
1 11.952395 11.966939 11.964576 12.027570 11.957859 11.999328 12.066678 12.071651
2 11.798390 11.800390 11.807569 11.842686 11.807968 11.787126 11.880778 11.789903
3 11.834224 11.814334 11.820662 11.806835 11.840026 11.837654 11.755137 11.753889
4 11.287412 11.267859 11.271162 11.150576 11.289689 11.290524 11.328786 11.278980
print(stacked_test_train.shape)
stacked_test_train.head()
(1459, 8)
KernelRidge ElasticNet Lasso GradientBoostingRegressor BayesianRidge LassoLarsIC RandomForest XGBoost
0 11.655653 11.666206 11.661235 11.717153 11.664298 11.639410 11.735618 11.754628
1 12.033653 12.042914 12.039875 11.950150 12.032724 12.007921 11.956780 11.985191
2 12.121196 12.121925 12.124266 12.138572 12.125334 12.072644 12.097413 12.115376
3 12.194246 12.200128 12.201113 12.166538 12.196015 12.143436 12.095009 12.139894
4 12.171520 12.180859 12.179168 12.145913 12.167523 12.168576 12.178091 12.176064
stacked_validation_train.drop('Lasso',axis=1,inplace=True)
stacked_test_train.drop('Lasso',axis=1,inplace=True)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler



meta_model = make_pipeline(RobustScaler(),Lasso(alpha=0.00001,copy_X=True,fit_intercept=True,normalize=False,precompute=False,
                                               max_iter=10000,tol=0.0001,selection='random',random_state=42))
meta_model.fit(stacked_validation_train,Y_test)
meta_model_pred= np.expm1(meta_model.predict(stacked_test_train))
print("meta_model 完成训练,并预测测试集的数据")
meta_model 完成训练,并预测测试集的数据


/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/sklearn/linear_model/coordinate_descent.py:475: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 1.7538551527086552, tolerance: 0.006483051719467419
  positive)
models = [KernelRidge(), ElasticNet(), Lasso(), GradientBoostingRegressor(), BayesianRidge(), LassoLarsIC(), RandomForestRegressor(), xgb.XGBRegressor()]
names = ['KernelRidge', 'ElasticNet', 'Lasso', 'Gradient Boosting', 'Bayesian Ridge', 'Lasso Lars IC', 'Random Forest', 'XGBoost']
params_grid = [KR_param_grid, EN_param_grid, LASS_param_grid, GB_param_grid, BR_param_grid, LL_param_grid, RFR_param_grid, XGB_param_grid]
final_predictions = pd.DataFrame()

row_index=0

for alg in models:
    
    gs_alg = GridSearchCV(alg, param_grid = params_grid[0], cv = shuff, scoring = 'neg_mean_squared_error', n_jobs=-1)
    params_grid.pop(0)
    
    gs_alg.fit(stacked_validation_train, Y_test)
    gs_best = gs_alg.best_estimator_
    final_predictions.insert(loc = row_index, column = names[0], value = np.expm1(gs_best.predict(stacked_test_train)))
    print(row_index+1, alg.__class__.__name__, 'final results predicted added to table...')
    names.pop(0)
    
    row_index+=1

print("-"*50)
print("已经完成")
final_predictions.head()
1 KernelRidge final results predicted added to table...
2 ElasticNet final results predicted added to table...
3 Lasso final results predicted added to table...
4 GradientBoostingRegressor final results predicted added to table...
5 BayesianRidge final results predicted added to table...
6 LassoLarsIC final results predicted added to table...
7 RandomForestRegressor final results predicted added to table...
[18:03:42] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.
8 XGBRegressor final results predicted added to table...
--------------------------------------------------
已经完成


/Users/aihuishou/anaconda3/envs/work/lib/python3.6/site-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version
  if getattr(data, 'base', None) is not None and \
KernelRidge ElasticNet Lasso Gradient Boosting Bayesian Ridge Lasso Lars IC Random Forest XGBoost
0 120698.786728 121126.968875 120569.541877 119545.552352 121817.672344 121618.593011 120774.731602 117987.320312
1 162778.261755 162293.616103 163198.661456 154034.245333 162888.953970 162663.194168 154944.085742 154422.265625
2 184187.690046 183822.395933 184145.902661 181996.954345 185167.984485 184643.383928 181824.224304 174336.687500
3 193128.541814 192388.040730 193035.580999 195110.109361 193760.580424 193069.794744 188563.541259 181933.593750
4 192957.823204 192839.290437 193289.070140 192292.299199 192910.466862 192890.725826 190770.891456 192144.093750
ensemble = meta_model_pred*(1/10) + final_predictions['XGBoost']*(1.5/10) + final_predictions['Gradient Boosting']*(2/10) + final_predictions['Bayesian Ridge']*(1/10) + final_predictions['Lasso']*(1/10) + final_predictions['KernelRidge']*(1/10) + final_predictions['Lasso Lars IC']*(1/10) + final_predictions['Random Forest']*(1.5/10)

submission = pd.DataFrame()
test1 = pd.read_csv('test.csv',index_col=False)
test_ID = test1['Id']
submission['Id'] = test_ID
submission['SalePrice'] = ensemble
submission.to_csv('final_submission.csv',index=False)
print("Submission file, created!")
Submission file, created!

猜你喜欢

转载自www.cnblogs.com/onemorepoint/p/11236051.html