电容与电源滤波电容如何选取

最近搭建了一个简单的振荡电路,一直没有弄清楚其原理,就是因为对电容充放电没有弄清楚,电容两个重要物理原理:
1、电容两端的电压差不能突变,当电容一个极板突然增加电压Vdd时,其另一极板上也增加Vdd。
2、电荷共享原理:电容C1和C2上极板开始时电荷分别为C1V1和C2V2,当开关合并后两上极板上的电压相等。

 电容两个重要物理原理: - 北极星 - xiebingsuccess的博客

再举个例子更详细的说明电容的特性1:

电容与电源滤波电容如何选取 - 北极星 - xiebingsuccess的博客

 

电容与电源滤波电容如何选取 - 北极星 - xiebingsuccess的博客

 

电容串联:

电容两个重要物理原理: - 北极星 - xiebingsuccess的博客

 假设有n只电容器,电容分别为C1,C2,…,Cn,串联的方法如图所示。每一只电容器的每一极板都只和另一只电容器的一个极板相连接。把电源接到这个组合体两端的两个极板上进行充电,使两端的极板上分别带异种电荷+q和-q。由于静电感应,每个电容器的两极板上亦分别感应出等量异种电荷+q和-q,假设电路上A,B,…,E各点的电位分别为UA,UB,…,UE(假定无穷远处为零电   位参考点),由于电容器的电容不受外界影响,串联后每一只电容器的电容都和其单独存在时一样,所以单独考虑图中的各只电容器时,有如下的关系:

            UA-UB=q/C1

            UB-UC=q/C2

              ……

            UD-UE=q/Cn

上面各式相加,可得:

        UA-UE=q(1/C1+1/C2+…+1/Cn)

如果把这一个电容器组当作为一个整体来看,它所存储的电荷只是两端极板上的电荷q,这两端极板的电位差是UA-UE,所以这一组合的等值电容C为:

      C=q/UA-UE=1/(1/C1+1/C2+…1/Cn)

即:

         1/C=1/C1+1/C2+…1/Cn        

串联电容器组的等值电容的倒数,等于各个电容器电容的倒数之和。电容器串联后,使总电容变小,但每个电容器两极板间的电位差比所加的总电压小,因此电容器的耐压程度增加。这是电容器串联的优点。  

电容并联:

  电容两个重要物理原理: - 北极星 - xiebingsuccess的博客

 各个电容器的一块极板都连接在同一点A上,另一块极板都连接在另一点B上。接上电源后,每一只电容器两极板的电压都等于A、B两点间的电势差UA-UB,各个电容器极板上的电荷分别为q1,q2,…,qn。对各个电容器来说,有:

C1=q1/UA-UB

C2=q2/UA-UB

……

Cn=qn/UA-UB

把所有电容器的组合看成一个整体,其存储的总电荷为:

               q=q1+q2+…qn

其两端的电压为UA-UB,因此这一组合的等值电容C为:

             C=q/U=(q1+q2+…+qn)/(UA-UB)

即:

             C=C1+C2+…+Cn   

并联电容器组的等值电容是各个电容器电容的总和。这样,总的电容量增加了,但是每只电容器两极板间的电压和单独使用时一样,因而耐压程度并没有因并联而改变。

根据应用场合和作用可分:

1、旁路电容:故名思义,是给交流信号提供一个对地的低阻抗通路。也可以称做滤波电容。

2、藕合电容:隔直流通交流,传递交流信号。根据di=C*dv/dt;不难理解。直流信号dv/dt=0,故无电流流过电容。

3、退(去)藕电容:在驱动电路中,如果负载变化很大,会对供应源产生电压或电流冲击,加退(去)藕电容就起缓冲作用。比如:IC的VCC,IC内部电子管的开、关高速动作引起VCC变化,如果有退(去)藕电容的话,其VCC变化不会延伸到供应VCC的电源端口。

4、储能电容:根据W=1/2* C*V^2;不难理解电容的容量越大;工作电压越大储存的能量越大。比如在RTC时钟电路的备电中,通过一个大容量的电容在工作时贮存电能,在掉电时,这个电容就释放电能起到很好的备电作用。

    在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。

电容两个重要物理原理: - 北极星 - xiebingsuccess的博客

 从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。

去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

去耦和旁路都可以看作滤波。去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。去耦电容一般都很大,对更高频率的噪声,基本无效。旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。电容一般都可以看成一个RLC串联模型。在某个频率,会发生谐振,此时电容的阻抗就等于其ESR。如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线。具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容。

电源滤波电容如何选取

电源滤波电容如何选取,掌握其精髓与方法,其实也不难.

1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地,可以想想为什么?

原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容虑低频,小电容虑高频,根本的原因在于SFR(自谐振频率)值不同,当然也可以想想为什么?如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.

2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少?就算我知道SFR值,我如何选取不同SFR值的电容值呢?是选取一个电容还是两个电容?

电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个,1)器件Data sheet,如22pf0402电容的SFR值在2G左右, 2)通过网络分析仪直接量测其自谐振频率,想想如何量测?S21?

知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.

电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.

但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2

在谐振频率以下电容呈容性,谐振频率以上电容呈感性.

因而一般大电容滤低频波,小电容滤高频波.

这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.

至于到底用多大的电容,这是一个参考

             电容谐振频率

电容值       DIP (MHz)      STM (MHz)

1.0μF        2.5                 5

0.1μF         8                  16

0.01μF        25                 50

1000pF        80                 160

100 pF        250                500

10 pF         800                1.6(GHz)

不过仅仅是参考而已,用老工程师的话说——主要靠经验.

更可靠的做法是将一大一小两个电容并联,

一般要求相差两个数量级以上,以获得更大的滤波频段.

猜你喜欢

转载自blog.csdn.net/xiebingsuccess/article/details/91876782
今日推荐