hadoop-mapreduce中reducetask运行分析

ReduceTask的运行

Reduce处理程序中需要执行三个类型的处理,

1.copy,从各mapcopy数据过来

2.sort,对数据进行排序操作。

3.reduce,执行业务逻辑的处理。

ReduceTask的运行也是通过run方法开始,

通过mapreduce.job.reduce.shuffle.consumer.plugin.class配置shuffleplugin,

默认是Shuffle实现类。实现ShuffleConsumerPlugin接口。

生成Shuffle实例,并执行plugininit函数进行初始化,

Class<? extendsShuffleConsumerPlugin> clazz =

job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class);

 

shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job);

LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin);

 

ShuffleConsumerPlugin.Context shuffleContext =

newShuffleConsumerPlugin.Context(getTaskID(), job, FileSystem.getLocal(job), umbilical,

super.lDirAlloc, reporter, codec,

combinerClass, combineCollector,

spilledRecordsCounter, reduceCombineInputCounter,

shuffledMapsCounter,

reduceShuffleBytes, failedShuffleCounter,

mergedMapOutputsCounter,

taskStatus, copyPhase, sortPhase, this,

mapOutputFile, localMapFiles);

shuffleConsumerPlugin.init(shuffleContext);

执行shufflerun函数,得到RawKeyValueIterator的实例。

rIter = shuffleConsumerPlugin.run();

 

Shuffle.run函数定义:

.....................................

 

int eventsPerReducer = Math.max(MIN_EVENTS_TO_FETCH,

MAX_RPC_OUTSTANDING_EVENTS / jobConf.getNumReduceTasks());

int maxEventsToFetch = Math.min(MAX_EVENTS_TO_FETCH, eventsPerReducer);

生成map的完成状态获取线程,并启动此线程,此线程中从am中获取此job中所有完成的mapevent

通过ShuffleSchedulerImpl实例把所有的map的完成的maphost,mapid,

等记录到mapLocations容器中。此线程每一秒执行一个获取操作。

// Start the map-completion events fetcher thread

final EventFetcher<K,V> eventFetcher =

new EventFetcher<K,V>(reduceId, umbilical, scheduler, this,

maxEventsToFetch);

eventFetcher.start();

下面看看EventFetcher.run函数的执行过程:以下代码中我只保留了代码的主体部分。

...................

EventFetcher.run:

public void run() {

int failures = 0;

........................

int numNewMaps = getMapCompletionEvents();

..................................

}

......................

}

EventFetcher.getMapCompletionEvents

..................................

MapTaskCompletionEventsUpdate update =

umbilical.getMapCompletionEvents(

(org.apache.hadoop.mapred.JobID)reduce.getJobID(),

fromEventIdx,

maxEventsToFetch,

(org.apache.hadoop.mapred.TaskAttemptID)reduce);

events = update.getMapTaskCompletionEvents();

.....................

for (TaskCompletionEvent event : events) {

scheduler.resolve(event);

if (TaskCompletionEvent.Status.SUCCEEDED == event.getTaskStatus()) {

++numNewMaps;

}

}

shecdulerShuffleShedulerImpl的实例。

ShuffleShedulerImpl.resolve

case SUCCEEDED:

URI u = getBaseURI(reduceId, event.getTaskTrackerHttp());

addKnownMapOutput(u.getHost() + ":" + u.getPort(),

u.toString(),

event.getTaskAttemptId());

maxMapRuntime = Math.max(maxMapRuntime, event.getTaskRunTime());

break;

.......

ShuffleShedulerImpl.addKnownMapOutput函数:

mapid与对应的host添加到mapLocations容器中,

MapHost host = mapLocations.get(hostName);

if (host == null) {

host = new MapHost(hostName, hostUrl);

mapLocations.put(hostName, host);

}

此时会把host的状设置为PENDING

host.addKnownMap(mapId);

同时把host添加到pendingHosts容器中。notify相关的Fetcher文件copy线程。

// Mark the host as pending

if (host.getState() == State.PENDING) {

pendingHosts.add(host);

notifyAll();

}

.....................

 

回到ReduceTask.run函数中,接着向下执行

// Start the map-output fetcher threads

boolean isLocal = localMapFiles != null;

通过mapreduce.reduce.shuffle.parallelcopies配置的值,默认为5,生成获取map数据的线程数。

生成Fetcher线程实例,并启动相关的线程。

通过mapreduce.reduce.shuffle.connect.timeout配置连接超时时间。默认180000

通过mapreduce.reduce.shuffle.read.timeout配置读取超时时间,默认为180000

finalint numFetchers = isLocal ? 1 :

jobConf.getInt(MRJobConfig.SHUFFLE_PARALLEL_COPIES, 5);

Fetcher<K,V>[] fetchers = new Fetcher[numFetchers];

if (isLocal) {

fetchers[0] = new LocalFetcher<K, V>(jobConf, reduceId, scheduler,

merger, reporter, metrics, this, reduceTask.getShuffleSecret(),

localMapFiles);

fetchers[0].start();

} else {

for (int i=0; i < numFetchers; ++i) {

fetchers[i] = new Fetcher<K,V>(jobConf, reduceId, scheduler, merger,

reporter, metrics, this,

reduceTask.getShuffleSecret());

fetchers[i].start();

}

}

.........................

 

接下来进行Fetcher线程里面,看看Fetcher.run函数运行流程:

..........................

MapHost host = null;

try {

// If merge is on, block

merger.waitForResource();

ShuffleScheduler中取出一个MapHost实例,

// Get a host to shuffle from

host = scheduler.getHost();

metrics.threadBusy();

执行shuffle操作。

// Shuffle

copyFromHost(host);

} finally {

if (host != null) {

scheduler.freeHost(host);

metrics.threadFree();

}

}

接下来看看ShuffleScheduler中的getHost函数:

........

如果pendingHosts的值没有,先wait住,等待EventFetcher线程去获取数据来notifywait

while(pendingHosts.isEmpty()) {

wait();

}

 

MapHost host = null;

Iterator<MapHost> iter = pendingHosts.iterator();

pendingHostsrandom出一个MapHost,并返回给调用程序。

int numToPick = random.nextInt(pendingHosts.size());

for (int i=0; i <= numToPick; ++i) {

host = iter.next();

}

 

pendingHosts.remove(host);

........................

当得到一个MapHost后,执行copyFromHost来进行数据的copy操作。

此时,一个taskhosturl样子基本上是这个样子:

host:port/mapOutput?job=xxx&reduce=123(当前reducepartid)&map=

copyFromHost的代码部分:

.....

List<TaskAttemptID> maps = scheduler.getMapsForHost(host);

.....

Set<TaskAttemptID> remaining = new HashSet<TaskAttemptID>(maps);

.....

此部分完成后,url样子中map=后面会有很多个mapid,多个用英文的”,”号分开的。

URL url = getMapOutputURL(host, maps);

此处根据url打开http connection,

如果mapreduce.shuffle.ssl.enabled配置为true时,会打开SSL连接。默认为false.

openConnection(url);

.....

设置连接超时时间,header,读取超时时间等值。并打开HttpConnection的连接。

// put url hash into http header

connection.addRequestProperty(

SecureShuffleUtils.HTTP_HEADER_URL_HASH, encHash);

// set the read timeout

connection.setReadTimeout(readTimeout);

// put shuffle version into http header

connection.addRequestProperty(ShuffleHeader.HTTP_HEADER_NAME,

ShuffleHeader.DEFAULT_HTTP_HEADER_NAME);

connection.addRequestProperty(ShuffleHeader.HTTP_HEADER_VERSION,

ShuffleHeader.DEFAULT_HTTP_HEADER_VERSION);

connect(connection, connectionTimeout);

.....

执行文件的copy操作。此处是迭代执行,每一个读取一个map的文件。

并把remaining中的值去掉一个。直到remaining的值全部读取完成。

TaskAttemptID[] failedTasks = null;

while (!remaining.isEmpty() && failedTasks == null) {

copyMapOutput函数中,每次读取一个mapid,

根据MergeManagerImpl中的reserve函数,

1.检查map的输出是否超过了mapreduce.reduce.memory.totalbytes配置的大小。

此配置的默认值

是当前RuntimemaxMemory*mapreduce.reduce.shuffle.input.buffer.percent配置的值。

Buffer.percent的默认值为0.90;

如果mapoutput超过了此配置的大小时,生成一个OnDiskMapOutput实例。

2.如果没有超过此大小,生成一个InMemoryMapOutput实例。

failedTasks = copyMapOutput(host, input, remaining);

}

copyMapOutput函数中首先调用的MergeManagerImpl.reserve函数:

if (!canShuffleToMemory(requestedSize)) {

.....

returnnew OnDiskMapOutput<K,V>(mapId, reduceId, this, requestedSize,

jobConf, mapOutputFile, fetcher, true);

}

.....

if (usedMemory > memoryLimit) {

.....,当前使用的memory已经超过了配置的内存使用大小,此时返回null

host重新添加到shuffleSchedulerpendingHosts队列中。

returnnull;

}

return unconditionalReserve(mapId, requestedSize, true);

生成一个 InMemoryMapOutput,并把usedMemory加上此mapoutput的大小。

privatesynchronized InMemoryMapOutput<K, V> unconditionalReserve(

TaskAttemptID mapId, long requestedSize, boolean primaryMapOutput) {

usedMemory += requestedSize;

returnnew InMemoryMapOutput<K,V>(jobConf, mapId, this, (int)requestedSize,

codec, primaryMapOutput);

}

 

下面是当usedMemory使用超过了指定的大小后,的处理部分,重新把host添加到队列中。

如下所示:copyMapOutput函数

if (mapOutput == null) {

LOG.info("fetcher#" + id + " - MergeManager returned status WAIT ...");

//Not an error but wait to process data.

returnEMPTY_ATTEMPT_ID_ARRAY;

}

此时host中还有没处理完成的mapoutput,Fetcher.run中,重新添加到队列中把此host

if (host != null) {

scheduler.freeHost(host);

metrics.threadFree();

}

.........

接下来还是在copyMapOutput函数中,

通过mapoutput也就是merge.reserve函数返回的实例的shuffle函数。

如果mapoutputInMemoryMapOutput,在调用shuffle时,直接把map输出写入到内存。

如果是OnDiskMapOutput,在调用shuffle时,直接把map的输出写入到local临时文件中。

....

最后,执行ShuffleScheduler.copySucceeded完成文件的copy,调用mapout.commit函数。

scheduler.copySucceeded(mapId, host, compressedLength,

endTime - startTime, mapOutput);

并从remaining中移出处理过的mapid,

 

接下来看看MapOutput.commit函数:

a.InMemoryMapOutput.commit函数:

publicvoid commit() throws IOException {

merger.closeInMemoryFile(this);

}

调用MergeManagerImpl.closeInMemoryFile函数:

publicsynchronizedvoid closeInMemoryFile(InMemoryMapOutput<K,V> mapOutput) {

把此mapOutput实例添加到inMemoryMapOutputs列表中。

inMemoryMapOutputs.add(mapOutput);

LOG.info("closeInMemoryFile -> map-output of size: " + mapOutput.getSize()

+ ", inMemoryMapOutputs.size() -> " + inMemoryMapOutputs.size()

+ ", commitMemory -> " + commitMemory + ", usedMemory ->" + usedMemory);

commitMemory的大小增加当前传入的mapoutputsize大小。

commitMemory+= mapOutput.getSize();

检查是否达到merge的值,

此值是mapreduce.reduce.memory.totalbytes配置

*mapreduce.reduce.shuffle.merge.percent配置的值,

默认是当前Runtimememory*0.90*0.90

也就是说,只有有新的mapoutput加入,这个检查条件就肯定会达到

// Can hang if mergeThreshold is really low.

if (commitMemory >= mergeThreshold) {

.......

把正在进行mergemapoutput列表添加到一起发起merge操作。

inMemoryMapOutputs.addAll(inMemoryMergedMapOutputs);

inMemoryMergedMapOutputs.clear();

inMemoryMerger.startMerge(inMemoryMapOutputs);

commitMemory = 0L; // Reset commitMemory.

}

如果mapreduce.reduce.merge.memtomem.enabled配置为true,默认为false

同时inMemoryMapOutputs中的mapoutput个数

达到了mapreduce.reduce.merge.memtomem.threshold配置的值,

默认值是mapreduce.task.io.sort.factor配置的值,默认为100

发起memTomemmerger操作。

if (memToMemMerger != null) {

if (inMemoryMapOutputs.size() >= memToMemMergeOutputsThreshold) {

memToMemMerger.startMerge(inMemoryMapOutputs);

}

}

}

 

MergemanagerImpl.InMemoryMerger.merger函数操作:

在执行inMemoryMerger.startMerge(inMemoryMapOutputs);操作后,会notify此线程,

同时执行merger函数:

publicvoid merge(List<InMemoryMapOutput<K,V>> inputs) throws IOException {

if (inputs == null || inputs.size() == 0) {

return;

}

....................

TaskAttemptID mapId = inputs.get(0).getMapId();

TaskID mapTaskId = mapId.getTaskID();

 

List<Segment<K, V>> inMemorySegments = new ArrayList<Segment<K, V>>();

生成InMemoryReader实例,并把传入的容器清空,把生成好后的segment放到到inmemorysegments中。

long mergeOutputSize =

createInMemorySegments(inputs, inMemorySegments,0);

int noInMemorySegments = inMemorySegments.size();

生成一个输出的文件路径,

Path outputPath =

mapOutputFile.getInputFileForWrite(mapTaskId,

mergeOutputSize).suffix(

Task.MERGED_OUTPUT_PREFIX);

针对输出的临时文件生成一个Write实例。

Writer<K,V> writer =

new Writer<K,V>(jobConf, rfs, outputPath,

(Class<K>) jobConf.getMapOutputKeyClass(),

(Class<V>) jobConf.getMapOutputValueClass(),

codec, null);

 

RawKeyValueIterator rIter = null;

CompressAwarePath compressAwarePath;

try {

LOG.info("Initiating in-memory merge with " + noInMemorySegments +

" segments...");

此部分与map端的输出没什么区别,得到几个segment的文件的一个iterator,

此部分是一个优先堆,每一次next都会从所有的segment中读取出最小的一个keyvalue

rIter = Merger.merge(jobConf, rfs,

(Class<K>)jobConf.getMapOutputKeyClass(),

(Class<V>)jobConf.getMapOutputValueClass(),

inMemorySegments, inMemorySegments.size(),

new Path(reduceId.toString()),

(RawComparator<K>)jobConf.getOutputKeyComparator(),

reporter, spilledRecordsCounter, null, null);

如果没有combiner程序,直接写入到文件,否则,如果有combiner,先执行combiner处理。

if (null == combinerClass) {

Merger.writeFile(rIter, writer, reporter, jobConf);

} else {

combineCollector.setWriter(writer);

combineAndSpill(rIter, reduceCombineInputCounter);

}

writer.close();

此处与map端的输出不同的地方在这里,这里不写入spillindex文件,

而是生成一个 CompressAwarePath,把输出路径,大小写入到此实例中。

compressAwarePath = new CompressAwarePath(outputPath,

writer.getRawLength(), writer.getCompressedLength());

 

LOG.info(reduceId +

" Merge of the " + noInMemorySegments +

" files in-memory complete." +

" Local file is " + outputPath + " of size " +

localFS.getFileStatus(outputPath).getLen());

} catch (IOException e) {

//make sure that we delete the ondisk file that we created

//earlier when we invoked cloneFileAttributes

localFS.delete(outputPath, true);

throw e;

}

此处,把生成的文件添加到onDiskMapOutputs属性中,

并检查此容器中的文件是否达到了mapreduce.task.io.sort.factor配置的值,

如果是,发起diskmerger操作。

// Note the output of the merge

closeOnDiskFile(compressAwarePath);

}

 

}

上面最后一行的全部定义在下面这里。

publicsynchronizedvoid closeOnDiskFile(CompressAwarePath file) {

onDiskMapOutputs.add(file);

 

if (onDiskMapOutputs.size() >= (2 * ioSortFactor - 1)) {

onDiskMerger.startMerge(onDiskMapOutputs);

}

}

 

b.OnDiskMapOutput.commit函数:

tmp文件rename到指定的目录下,生成一个CompressAwarePath实例,调用上面提到的处理程序。

publicvoid commit() throws IOException {

fs.rename(tmpOutputPath, outputPath);

CompressAwarePath compressAwarePath = new CompressAwarePath(outputPath,

getSize(), this.compressedSize);

merger.closeOnDiskFile(compressAwarePath);

}

 

MergeManagerImpl.OnDiskMerger.merger函数:

这个函数到现在基本上没有什么可以解说的东西,注意一点就是,

merge一个文件后,会把这个merge后的文件路径重新添加到onDiskMapOutputs 容器中。

publicvoid merge(List<CompressAwarePath> inputs) throws IOException {

// sanity check

if (inputs == null || inputs.isEmpty()) {

LOG.info("No ondisk files to merge...");

return;

}

 

long approxOutputSize = 0;

int bytesPerSum =

jobConf.getInt("io.bytes.per.checksum", 512);

 

LOG.info("OnDiskMerger: We have " + inputs.size() +

" map outputs on disk. Triggering merge...");

 

// 1. Prepare the list of files to be merged.

for (CompressAwarePath file : inputs) {

approxOutputSize += localFS.getFileStatus(file).getLen();

}

 

// add the checksum length

approxOutputSize +=

ChecksumFileSystem.getChecksumLength(approxOutputSize, bytesPerSum);

 

// 2. Start the on-disk merge process

Path outputPath =

localDirAllocator.getLocalPathForWrite(inputs.get(0).toString(),

approxOutputSize, jobConf).suffix(Task.MERGED_OUTPUT_PREFIX);

Writer<K,V> writer =

new Writer<K,V>(jobConf, rfs, outputPath,

(Class<K>) jobConf.getMapOutputKeyClass(),

(Class<V>) jobConf.getMapOutputValueClass(),

codec, null);

RawKeyValueIterator iter = null;

CompressAwarePath compressAwarePath;

Path tmpDir = new Path(reduceId.toString());

try {

iter = Merger.merge(jobConf, rfs,

(Class<K>) jobConf.getMapOutputKeyClass(),

(Class<V>) jobConf.getMapOutputValueClass(),

codec, inputs.toArray(new Path[inputs.size()]),

true, ioSortFactor, tmpDir,

(RawComparator<K>) jobConf.getOutputKeyComparator(),

reporter, spilledRecordsCounter, null,

mergedMapOutputsCounter, null);

 

Merger.writeFile(iter, writer, reporter, jobConf);

writer.close();

compressAwarePath = new CompressAwarePath(outputPath,

writer.getRawLength(), writer.getCompressedLength());

} catch (IOException e) {

localFS.delete(outputPath, true);

throw e;

}

 

closeOnDiskFile(compressAwarePath);

 

LOG.info(reduceId +

" Finished merging " + inputs.size() +

" map output files on disk of total-size " +

approxOutputSize + "." +

" Local output file is " + outputPath + " of size " +

localFS.getFileStatus(outputPath).getLen());

}

}

 

ok,现在mapcopy部分执行完成,回到ShuffleConsumerPluginrun方法中,

也就是Shufflerun方法中,接着上面的代码向下分析:

此处等待所有的copy操作完成,

// Wait for shuffle to complete successfully

while (!scheduler.waitUntilDone(PROGRESS_FREQUENCY)) {

reporter.progress();

 

synchronized (this) {

if (throwable != null) {

thrownew ShuffleError("error in shuffle in " + throwingThreadName,

throwable);

}

}

}

如果执行到这一行时,说明所有的map copy操作已经完成,

关闭查找map运行状态的线程与执行copy操作的几个线程。

// Stop the event-fetcher thread

eventFetcher.shutDown();

 

// Stop the map-output fetcher threads

for (Fetcher<K,V> fetcher : fetchers) {

fetcher.shutDown();

}

 

// stop the scheduler

scheduler.close();

am发送状态,通知AM,此时要执行排序操作。

copyPhase.complete(); // copy is already complete

taskStatus.setPhase(TaskStatus.Phase.SORT);

reduceTask.statusUpdate(umbilical);

 

执行最后的merge,其实在合并所有文件与memory中的数据时,也同时会进行排序操作。

// Finish the on-going merges...

RawKeyValueIterator kvIter = null;

try {

kvIter = merger.close();

} catch (Throwable e) {

thrownew ShuffleError("Error while doing final merge " , e);

}

 

// Sanity check

synchronized (this) {

if (throwable != null) {

thrownew ShuffleError("error in shuffle in " + throwingThreadName,

throwable);

}

}

最后返回这个合并后的iterator实例。

return kvIter;

 

Merger也就是MergeManagerImpl.close函数:

public RawKeyValueIterator close() throws Throwable {

关闭几个merge的线程,在关闭时会等待现有的merge完成。

// Wait for on-going merges to complete

if (memToMemMerger != null) {

memToMemMerger.close();

}

inMemoryMerger.close();

onDiskMerger.close();

 

List<InMemoryMapOutput<K, V>> memory =

new ArrayList<InMemoryMapOutput<K, V>>(inMemoryMergedMapOutputs);

inMemoryMergedMapOutputs.clear();

memory.addAll(inMemoryMapOutputs);

inMemoryMapOutputs.clear();

List<CompressAwarePath> disk = new ArrayList<CompressAwarePath>(onDiskMapOutputs);

onDiskMapOutputs.clear();

执行最终的merge操作。

return finalMerge(jobConf, rfs, memory, disk);

}

最后的一个merge操作

private RawKeyValueIterator finalMerge(JobConf job, FileSystem fs,

List<InMemoryMapOutput<K,V>> inMemoryMapOutputs,

List<CompressAwarePath> onDiskMapOutputs

) throws IOException {

LOG.info("finalMerge called with " +

inMemoryMapOutputs.size() + " in-memory map-outputs and " +

onDiskMapOutputs.size() + " on-disk map-outputs");

 

finalfloat maxRedPer =

job.getFloat(MRJobConfig.REDUCE_INPUT_BUFFER_PERCENT, 0f);

if (maxRedPer > 1.0 || maxRedPer < 0.0) {

thrownew IOException(MRJobConfig.REDUCE_INPUT_BUFFER_PERCENT +

maxRedPer);

}

得到可以cache到内存的大小,比例通过mapreduce.reduce.input.buffer.percent配置,

int maxInMemReduce = (int)Math.min(

Runtime.getRuntime().maxMemory() * maxRedPer, Integer.MAX_VALUE);

 

 

// merge configparams

Class<K> keyClass = (Class<K>)job.getMapOutputKeyClass();

Class<V> valueClass = (Class<V>)job.getMapOutputValueClass();

boolean keepInputs = job.getKeepFailedTaskFiles();

final Path tmpDir = new Path(reduceId.toString());

final RawComparator<K> comparator =

(RawComparator<K>)job.getOutputKeyComparator();

 

// segments required to vacate memory

List<Segment<K,V>> memDiskSegments = new ArrayList<Segment<K,V>>();

long inMemToDiskBytes = 0;

boolean mergePhaseFinished = false;

if (inMemoryMapOutputs.size() > 0) {

TaskID mapId = inMemoryMapOutputs.get(0).getMapId().getTaskID();

这个地方根据可cache到内存的值,把不能cache到内存的部分生成InMemoryReader实例,

并添加到memDiskSegments 容器中。

inMemToDiskBytes = createInMemorySegments(inMemoryMapOutputs,

memDiskSegments,

maxInMemReduce);

finalint numMemDiskSegments = memDiskSegments.size();

把内存中多于部分的mapoutput数据写入到文件中,并把文件路径添加到onDiskMapOutputs容器中。

if (numMemDiskSegments > 0 &&

ioSortFactor > onDiskMapOutputs.size()) {

...........

此部分主要是写入内存中多于的mapoutput到磁盘中去

mergePhaseFinished = true;

// must spill to disk, but can't retain in-mem for intermediate merge

final Path outputPath =

mapOutputFile.getInputFileForWrite(mapId,

inMemToDiskBytes).suffix(

Task.MERGED_OUTPUT_PREFIX);

final RawKeyValueIterator rIter = Merger.merge(job, fs,

keyClass, valueClass, memDiskSegments, numMemDiskSegments,

tmpDir, comparator, reporter, spilledRecordsCounter, null,

mergePhase);

Writer<K,V> writer = new Writer<K,V>(job, fs, outputPath,

keyClass, valueClass, codec, null);

try {

Merger.writeFile(rIter, writer, reporter, job);

writer.close();

onDiskMapOutputs.add(new CompressAwarePath(outputPath,

writer.getRawLength(), writer.getCompressedLength()));

writer = null;

// add to list of final disk outputs.

} catch (IOException e) {

if (null != outputPath) {

try {

fs.delete(outputPath, true);

} catch (IOException ie) {

// NOTHING

}

}

throw e;

} finally {

if (null != writer) {

writer.close();

}

}

LOG.info("Merged " + numMemDiskSegments + " segments, " +

inMemToDiskBytes + " bytes to disk to satisfy " +

"reduce memory limit");

inMemToDiskBytes = 0;

memDiskSegments.clear();

} elseif (inMemToDiskBytes != 0) {

LOG.info("Keeping " + numMemDiskSegments + " segments, " +

inMemToDiskBytes + " bytes in memory for " +

"intermediate, on-disk merge");

}

}

 

// segments on disk

List<Segment<K,V>> diskSegments = new ArrayList<Segment<K,V>>();

long onDiskBytes = inMemToDiskBytes;

long rawBytes = inMemToDiskBytes;

生成目前文件中有的所有的mapoutput路径的onDisk数组

CompressAwarePath[] onDisk = onDiskMapOutputs.toArray(

new CompressAwarePath[onDiskMapOutputs.size()]);

for (CompressAwarePath file : onDisk) {

long fileLength = fs.getFileStatus(file).getLen();

onDiskBytes += fileLength;

rawBytes += (file.getRawDataLength() > 0) ? file.getRawDataLength() : fileLength;

 

LOG.debug("Disk file: " + file + " Length is " + fileLength);

把现在reduce端接收过来并存储到文件中的mapoutput生成segment并添加到distSegments容器中

diskSegments.add(new Segment<K, V>(job, fs, file, codec, keepInputs,

(file.toString().endsWith(

Task.MERGED_OUTPUT_PREFIX) ?

null : mergedMapOutputsCounter), file.getRawDataLength()

));

}

LOG.info("Merging " + onDisk.length + " files, " +

onDiskBytes + " bytes from disk");

按内容的大小从小到大排序此distSegments容器

Collections.sort(diskSegments, new Comparator<Segment<K,V>>() {

publicint compare(Segment<K, V> o1, Segment<K, V> o2) {

if (o1.getLength() == o2.getLength()) {

return 0;

}

return o1.getLength() < o2.getLength() ? -1 : 1;

}

});

把现在memory中所有的mapoutput内容生成segment并添加到finalSegments容器中。

// build final list of segments from merged backed by disk + in-mem

List<Segment<K,V>> finalSegments = new ArrayList<Segment<K,V>>();

long inMemBytes = createInMemorySegments(inMemoryMapOutputs,

finalSegments, 0);

LOG.info("Merging " + finalSegments.size() + " segments, " +

inMemBytes + " bytes from memory into reduce");

if (0 != onDiskBytes) {

finalint numInMemSegments = memDiskSegments.size();

diskSegments.addAll(0, memDiskSegments);

memDiskSegments.clear();

// Pass mergePhase only if there is a going to be intermediate

// merges. See comment where mergePhaseFinished is being set

Progress thisPhase = (mergePhaseFinished) ? null : mergePhase;

这个部分是把现在磁盘上的mapoutput生成一个iterator,

RawKeyValueIterator diskMerge = Merger.merge(

job, fs, keyClass, valueClass, codec, diskSegments,

ioSortFactor, numInMemSegments, tmpDir, comparator,

reporter, false, spilledRecordsCounter, null, thisPhase);

diskSegments.clear();

if (0 == finalSegments.size()) {

return diskMerge;

}

把现在磁盘上的iterator也同样添加到finalSegments容器中,

也就是此时,这个容器中有两个优先堆排序的队列,每next一次,要从内存与磁盘中找出最小的一个kv.

finalSegments.add(new Segment<K,V>(

new RawKVIteratorReader(diskMerge, onDiskBytes), true, rawBytes));

}

return Merger.merge(job, fs, keyClass, valueClass,

finalSegments, finalSegments.size(), tmpDir,

comparator, reporter, spilledRecordsCounter, null,

null);

 

}

 

shuffle部分现在全部执行完成,重新加到ReduceTask.run函数中,接着代码向下分析:

rIter = shuffleConsumerPlugin.run();

............

RawComparator comparator = job.getOutputValueGroupingComparator();

if (useNewApi) {

runNewReducer(job, umbilical, reporter, rIter, comparator,

keyClass, valueClass);

} else {

runOldReducer........

}

在以上代码中执行runNewReducer主要是执行reducerun函数,

org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =

new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job,

getTaskID(), reporter);

// make a reducer

org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer =

(org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE>)

ReflectionUtils.newInstance(taskContext.getReducerClass(), job);

org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE> trackedRW =

new NewTrackingRecordWriter<OUTKEY, OUTVALUE>(this, taskContext);

job.setBoolean("mapred.skip.on", isSkipping());

job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());

org.apache.hadoop.mapreduce.Reducer.Context

reducerContext = createReduceContext(reducer, job, getTaskID(),

rIter, reduceInputKeyCounter,

reduceInputValueCounter,

trackedRW,

committer,

reporter, comparator, keyClass,

valueClass);

try {

reducer.run(reducerContext);

} finally {

trackedRW.close(reducerContext);

}

 

以上代码中创建Reducer运行的Context,并执行reducer.run函数:

createReduceContext函数定义部分代码:

org.apache.hadoop.mapreduce.ReduceContext<INKEY, INVALUE, OUTKEY, OUTVALUE>

reduceContext =

new ReduceContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, taskId,

rIter,

inputKeyCounter,

inputValueCounter,

output,

committer,

reporter,

comparator,

keyClass,

valueClass);

 

org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context

reducerContext =

new WrappedReducer<INKEY, INVALUE, OUTKEY, OUTVALUE>().getReducerContext(

reduceContext);

ReduceContextImpl主要是执行在RawKeyValueInterator中读取数据的相关操作。

Reducer.run函数:

public void run(Context context) throws IOException, InterruptedException {

setup(context);

try {

while (context.nextKey()) {

reduce(context.getCurrentKey(), context.getValues(), context);

// If a back up store is used, reset it

Iterator<VALUEIN> iter = context.getValues().iterator();

if(iter instanceof ReduceContext.ValueIterator) {

((ReduceContext.ValueIterator<VALUEIN>)iter).resetBackupStore();

}

}

} finally {

cleanup(context);

}

}

run函数中通过context.nextkey来得到下一行的数据,这部分主要在ReduceContextImpl中完成:

nextkey调用nextKeyValue函数:

public boolean nextKeyValue() throws IOException, InterruptedException {

if (!hasMore) {

key = null;

value = null;

returnfalse;

}

此处用来检查是否是一个key下面的第一个value,如果是第一个value时,此值为false,

也就是说,nextKeyIsSame的值是true时,表示现在next的数据与currentkey是一行数据。

否则表示已经进行了换行操作。

firstValue = !nextKeyIsSame;

执行一下RawKeyValueInterator(也就是Merge中的队列),得到当前最小的key

DataInputBuffer nextKey = input.getKey();

key设置到buffer中,设置到buffer中的目的是为了通过keyDeserializer来读取一个key的值。

currentRawKey.set(nextKey.getData(), nextKey.getPosition(),

nextKey.getLength() - nextKey.getPosition());

buffer.reset(currentRawKey.getBytes(), 0, currentRawKey.getLength());

buffer中读取key的值,并存储到key中,这个地方要注意一下,

下面先看看这部分的定义:

.........................

生成一个keyDeserializer实例,

this.keyDeserializer = serializationFactory.getDeserializer(keyClass);

buffer当成keyDeserializerInputStream

this.keyDeserializer.open(buffer);

Deserializer中执行deserializer函数的定义:

此部分定义可以看出,一个key/value只会生成实例,此部分从性能上考虑主要是为了减少对象的生成。

每次生成一个数据时,都是通过readFields重新去生成Writable实例中的内容,

因此,很多同学在reduce中使用value时,会出现数据引用不对的情况,

因为对象还是同一个对象,但值是最后一个,所以会出现数据不对的情况

public Writable deserialize(Writable w) throws IOException {

Writable writable;

if (w == null) {

writable

= (Writable) ReflectionUtils.newInstance(writableClass, getConf());

} else {

writable = w;

}

writable.readFields(dataIn);

return writable;

}

.........................

读取key的内容

key = keyDeserializer.deserialize(key);

key相同的方式,得到当前的value的值,

DataInputBuffer nextVal = input.getValue();

buffer.reset(nextVal.getData(), nextVal.getPosition(), nextVal.getLength()

- nextVal.getPosition());

value = valueDeserializer.deserialize(value);

 

currentKeyLength = nextKey.getLength() - nextKey.getPosition();

currentValueLength = nextVal.getLength() - nextVal.getPosition();

 

isMarked的值为false,同时backupStore属性为null

if (isMarked) {

backupStore.write(nextKey, nextVal);

}

input执行一次next操作,此处会从所有的文件/memory中找到最小的一个kv.

hasMore = input.next();

if (hasMore) {

比较一下,是否与currentkey是同一个key,如果是表示在同一行中。也就是key相同。

nextKey = input.getKey();

nextKeyIsSame = comparator.compare(currentRawKey.getBytes(), 0,

currentRawKey.getLength(),

nextKey.getData(),

nextKey.getPosition(),

nextKey.getLength() - nextKey.getPosition()

) == 0;

} else {

nextKeyIsSame = false;

}

inputValueCounter.increment(1);

returntrue;

}

 

接下来是调用reduce函数,此时会通过context.getValues函数把key对应的所有的value传给reduce.

此处的context.getValues如下所示:

ReduceContextImpl.getValues()

public

Iterable<VALUEIN> getValues() throws IOException, InterruptedException {

returniterable;

}

以上代码中直接返回的是iterable的实例,此实例在ReduceContextImpl实例生成时生成。

private ValueIterable iterable = new ValueIterable();

这个类是ReduceContextImpl中的内部类

protected class ValueIterable implements Iterable<VALUEIN> {

private ValueIterator iterator = new ValueIterator();

@Override

public Iterator<VALUEIN> iterator() {

returniterator;

}

}

此实例中引用一个ValueIterator类,这也是一个内部类。

每次进行执行时,通过此ValueIterator.next来获取一条数据,

public VALUEIN next() {

inReset的值默认为false.也就是说inReset检查内部的代码不会执行,其实backupStore本身值就是null

如果想使用backupStore,需要执行其内部的make函数。

if (inReset) {

.................里面的代码不分析

}

如果是key下面的第一个value,firstValue设置为false,因为下一次来时,就不是firstValue.

返回当前的value

// if this is the first record, we don't need to advance

if (firstValue) {

firstValue = false;

returnvalue;

}

// if this isn't the first record and the next key is different, they

// can't advance it here.

if (!nextKeyIsSame) {

thrownew NoSuchElementException("iterate past last value");

}

// otherwise, go to the next key/value pair

try {

这里表示不是第一个value的时候,也就是firstValue的值为false,执行一下nextKeyValue函数,

得到当前的value.返回。

nextKeyValue();

returnvalue;

} catch (IOException ie) {

thrownew RuntimeException("next value iterator failed", ie);

} catch (InterruptedException ie) {

// this is bad, but we can't modify the exception list of java.util

thrownew RuntimeException("next value iterator interrupted", ie);

}

}

 

reduce执行完成后的输出,跟map端无reduce时的输出一样。直接输出。

猜你喜欢

转载自hongs-yang.iteye.com/blog/2066287