uoj #450[集训队作业2018]复读机

传送门

\(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\)

\(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\(x_i\),那么答案为\(n!\sum\limits_{d|x_i,\sum x_i=n} \prod \frac{1}{x_i!}\),这个显然可以暴力背包生成函数,因为有\(d|x_i\)的限制,那么可以套用单位根反演,单个复读机的生成函数为\(\sum_{i=0}^{\infty}[d|i]\frac{x^i}{i!}\),也就是

\[\frac{1}{d}\sum_{i=0}^{\infty}\sum_{j=0}^{d-1}\omega_{d}^{ij}\frac{x^i}{i!}\]\[\frac{1}{d}\sum_{j=0}^{d-1}\sum_{i=0}^{\infty}\frac{\omega_{d}^{ij}x^i}{i!}\]\[\frac{1}{d}\sum_{i=0}^{d-1}e^{\omega_{d}^{i}x}\]

然后求出这个生成函数的\(k\)次方的\(n\)次项系数乘上\(n!\)就好了(注意到\(n!\)会和\(n\)次项中的\(\frac{1}{n!}\)抵消),实现的时候把\(e^x\)看成未知数,枚举\(e^{\omega_{d}^{0}x},e^{\omega_{d}^{1}x},(d=3\)时有\(e^{\omega_{d}^{2}x})\)出现了多少次,然后系数乘上组合数即可(说白了就是二项式定理展开)

代码

猜你喜欢

转载自www.cnblogs.com/smyjr/p/10907471.html