Implement GAN from scratch

GANs from Scratch 1: A deep introduction. With code in PyTorch and TensorFlow

修改文章代码中的错误后的代码如下:

import torch
from torch import nn, optim
from torch.autograd.variable import Variable
from torchvision import transforms, datasets
import matplotlib.pyplot as plt

DATA_FOLDER = 'D:/WorkSpace/Data/torchvision_data'

def mnist_data():
    compose = transforms.Compose(
        [transforms.ToTensor(),
         # transforms.Normalize((.5, .5, .5), (.5, .5, .5))
         transforms.Normalize([0.5], [0.5]) # MNIST只有一个通道
        ])
    return datasets.MNIST(root=DATA_FOLDER, train=True, transform=compose)

# Load data
data = mnist_data()
# Create loader with data, so that we can iterate over it
data_loader = torch.utils.data.DataLoader(data, batch_size=64, shuffle=True)
# Num batches
num_batches = len(data_loader)


class DiscriminatorNet(torch.nn.Module):
    """
    A three hidden-layer discriminative neural network
    """

    def __init__(self):
        super(DiscriminatorNet, self).__init__()
        n_features = 784
        n_out = 1

        self.hidden0 = nn.Sequential(
            nn.Linear(n_features, 1024),
            nn.LeakyReLU(0.2),
            nn.Dropout(0.3)
        )
        self.hidden1 = nn.Sequential(
            nn.Linear(1024, 512),
            nn.LeakyReLU(0.2),
            nn.Dropout(0.3)
        )
        self.hidden2 = nn.Sequential(
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2),
            nn.Dropout(0.3)
        )
        self.out = nn.Sequential(
            torch.nn.Linear(256, n_out),
            torch.nn.Sigmoid()
        )

    def forward(self, x):
        x = self.hidden0(x)
        x = self.hidden1(x)
        x = self.hidden2(x)
        x = self.out(x)
        return x


def images_to_vectors(images):
    return images.view(images.size(0), 784)


def vectors_to_images(vectors):
    return vectors.view(vectors.size(0), 1, 28, 28)


class GeneratorNet(torch.nn.Module):
    """
    A three hidden-layer generative neural network
    """

    def __init__(self):
        super(GeneratorNet, self).__init__()
        n_features = 100
        n_out = 784

        self.hidden0 = nn.Sequential(
            nn.Linear(n_features, 256),
            nn.LeakyReLU(0.2)
        )
        self.hidden1 = nn.Sequential(
            nn.Linear(256, 512),
            nn.LeakyReLU(0.2)
        )
        self.hidden2 = nn.Sequential(
            nn.Linear(512, 1024),
            nn.LeakyReLU(0.2)
        )

        self.out = nn.Sequential(
            nn.Linear(1024, n_out),
            nn.Tanh()
        )

    def forward(self, x):
        x = self.hidden0(x)
        x = self.hidden1(x)
        x = self.hidden2(x)
        x = self.out(x)
        return x


# Noise
def noise(size):
    n = Variable(torch.randn(size, 100))
    if torch.cuda.is_available(): return n.cuda()
    return n

discriminator = DiscriminatorNet()
generator = GeneratorNet()
if torch.cuda.is_available():
    discriminator.cuda()
    generator.cuda()

# Optimizers
d_optimizer = optim.Adam(discriminator.parameters(), lr=0.0002)
g_optimizer = optim.Adam(generator.parameters(), lr=0.0002)

# Loss function
loss = nn.BCELoss()

# Number of steps to apply to the discriminator
d_steps = 1  # In Goodfellow et. al 2014 this variable is assigned to 1
# Number of epochs
num_epochs = 200

def real_data_target(size):
    '''
    Tensor containing ones, with shape = size
    '''
    data = Variable(torch.ones(size, 1))
    if torch.cuda.is_available(): return data.cuda()
    return data

def fake_data_target(size):
    '''
    Tensor containing zeros, with shape = size
    '''
    data = Variable(torch.zeros(size, 1))
    if torch.cuda.is_available(): return data.cuda()
    return data


def train_discriminator(optimizer, real_data, fake_data):
    # Reset gradients
    optimizer.zero_grad()

    # 1.1 Train on Real Data
    prediction_real = discriminator(real_data)
    # Calculate error and backpropagate
    error_real = loss(prediction_real, real_data_target(real_data.size(0)))
    error_real.backward()

    # 1.2 Train on Fake Data
    prediction_fake = discriminator(fake_data)
    # Calculate error and backpropagate
    error_fake = loss(prediction_fake, fake_data_target(real_data.size(0)))
    error_fake.backward()

    # 1.3 Update weights with gradients
    optimizer.step()

    # Return error
    return error_real + error_fake, prediction_real, prediction_fake


def train_generator(optimizer, fake_data):
    # 2. Train Generator
    # Reset gradients
    optimizer.zero_grad()
    # Sample noise and generate fake data
    prediction = discriminator(fake_data)
    # Calculate error and backpropagate
    error = loss(prediction, real_data_target(prediction.size(0)))
    error.backward()
    # Update weights with gradients
    optimizer.step()
    # Return error
    return error

num_test_samples = 16
test_noise = noise(num_test_samples)

for epoch in range(num_epochs):
    for n_batch, (real_batch,_) in enumerate(data_loader):

        # 1. Train Discriminator
        real_data = Variable(images_to_vectors(real_batch))
        if torch.cuda.is_available(): real_data = real_data.cuda()
        # Generate fake data
        fake_data = generator(noise(real_data.size(0))).detach()
        # Train D
        d_error, d_pred_real, d_pred_fake = train_discriminator(d_optimizer,
                                                                real_data, fake_data)

        # 2. Train Generator
        # Generate fake data
        fake_data = generator(noise(real_batch.size(0)))
        # Train G
        g_error = train_generator(g_optimizer, fake_data)

        # Display Progress
    print('epoch ', epoch, ': ','d_error is ', d_error, 'g_error is ', g_error)
    if (epoch) % 20 == 0:
        test_images = vectors_to_images(generator(test_noise)).data.cpu()
        fig = plt.figure()
        for i in range(len(test_images)):
            ax = fig.add_subplot(4, 4, i+1)
            ax.imshow(test_images[i][0], cmap=plt.cm.gray)
        plt.show()

猜你喜欢

转载自www.cnblogs.com/ZeroTensor/p/10851877.html