毕设日志:CNN介绍——2019年3月1日

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_27022241/article/details/88066658

                         毕设日志:CNN介绍——2019年3月1日

原文:卷积神经网络CNN介绍

    卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进。

卷积神经网络的层级结构
      • 数据输入层/ Input layer
      • 卷积计算层/ CONV layer
      • ReLU激励层 / ReLU layer
      • 池化层 / Pooling layer
      • 全连接层 / FC layer

卷积神经网络之优缺点
    优点
    • 共享卷积核,对高维数据处理无压力
    • 无需手动选取特征,训练好权重,即得特征分类效果好
    缺点
    • 需要调参,需要大样本量,训练最好要GPU
   • 物理含义不明确(也就说,我们并不知道没个卷积层到底提取到的是什么特征,而且神经网络本身就是一种难以解释的“黑箱模型”)

    卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

原文:技术向:一文读懂卷积神经网络CNN

    20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。

局部感知

    一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。

多层卷积

    在实际应用中,往往使用多层卷积,然后再使用全连接层进行训练,多层卷积的目的是一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化。

原文:深度学习简介(一)——卷积神经网络

    深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。

    深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。

    1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和TorstenWiesel,以及 Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”,可视皮层是分级的。

    很自然想到,模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。 

    卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。

    卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。CNN最早由Yann LeCun提出并应用在手写字体识别上(MINST)。LeCun提出的网络称为LeNet。  

    这是一个最典型的卷积网络,由卷积层、池化层、全连接层组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。

    综合起来说,CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。

    CNN训练过程:向前传播、向后传播。

原文:大话卷积神经网络(CNN)

   

猜你喜欢

转载自blog.csdn.net/qq_27022241/article/details/88066658