关于Java多线程的一些常考知识点

前言

Java多线程也是面试中经常会提起到的一个点。面试官会问:实现多线程的两种方式以及区别,死锁发生的4个条件以及如何避免发生死锁,死锁和活锁的区别,常见的线程池以及区别,怎么理解有界队列与无界队列,多线程生产者消费者模型,怎么设计一个线程池,线程池的大致实现,ReetrantLockSynchronizedReadWriteLock的源码和区别、具体业务场景分析等等。

 
ashin_is_handsome.jpg

生产者消费者模型

其实生产者消费者模型挺像观察者模式的,对于该模型我们应该明确以下4点:

  • 当生产者生产出产品时,应该通知消费者去消费。
  • 当消费者消费完产品,应该通知生产者去生产。
  • 当产品的库存满了的时候,生产者不应该再去生产,而是通知消费者去消费。
  • 当产品的库存为0的时候,消费者不应该去消费,而是通知生产者去生产。
wait()和notify()实现
  • 定义生产者。
public class Producter implements Runnable { private Storage resource; public Producter(Storage resource) { super(); this.resource = resource; } @Override public void run() { while (true) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } resource.produce(); } } } 
  • 定义消费者。
public class Consumer implements Runnable { private Storage resource; public Consumer(Storage resource) { super(); this.resource = resource; } @Override public void run() { while (true) { try { Thread.sleep(500); } catch (InterruptedException e) { e.printStackTrace(); } resource.cosume(); } } } 
  • 定义Storage仓库。
public class Storage {

    private int MAX_SIZE = 20; private int count = 0; public synchronized void cosume() { while (count == 0) { try { System.out.println("【消费者】库存已经为空了,暂时不能进行消费任务!"); wait(); } catch (InterruptedException e) { e.printStackTrace(); } } count--; System.out.println("【消费者】" + Thread.currentThread().getName() + "消费产品, 库存:" + count); this.notify(); } public synchronized void produce() { while (count >= MAX_SIZE) { try { System.out.println("【生产者】库存已经满了,暂时不能进行生产任务!"); wait(); } catch (InterruptedException e) { e.printStackTrace(); } } count++; System.out.println("【生产者】" + Thread.currentThread().getName() + "生产产品, 库存" + count); this.notify(); } } 
  • 测试demo
public class ProducterCosumerXDemo {

    public static void main(String[] args) { Storage storage = new Storage(); ExecutorService service = Executors.newCachedThreadPool(); for (int i = 0; i < 5; i++) { service.submit(new Producter(storage)); } for (int i = 0; i < 5; i++) { service.submit(new Consumer(storage)); } service.shutdown(); } } 
 
image.png

 
image.png

 
image.png

我们这里创建了5个生产者,5个消费者。生产者生产的速度比消费者消费的速度要快,从图中很明显看到生产者率先生产出20个产品,已是库存极大值,往后不能再去生产了,然后通知消费者去消费。

用BlockingQueue实现

BlockingQueue是一个阻塞队列,也是面试官常喜欢问的一个点。BlockingQueue是线程安全的,内部可以自动调用wait()notify()方法。在多线程环境下,我们可以使用BlockingQueue去完成数据的共享,同时可以兼顾到效率和线程安全。

如果生产者生产商品的速度远大于消费者消费的速度,并且生产的商品累积到一定的数量,已经超过了BlockingQueue的最大容量,那么生产者就会被阻塞。那为什么时候撤销生产者的阻塞呢?只有消费者开始消费累积的商品,且累积的商品数量小于BlockingQueue的最大容量,才能撤销生产者的阻塞。

如果库存为0的话,消费者自动被阻塞。只有生产者生产出商品,才会撤销消费者的阻塞。

  • 定义Storage仓库
public class Storage {

    private BlockingQueue<Product> queues = new LinkedBlockingQueue<Product>(10); public void push(Product p) throws InterruptedException { queues.put(p); } public Product pop() throws InterruptedException { return queues.take(); } } 
  • 定义Product商品
public class Product {
    private int id; public static int MAX = 20; public Product(int id) { super(); this.id = id; } public int getId() { return id; } public void setId(int id) { this.id = id; } } 
  • 定义生产者
public class Producer implements Runnable { private String name; private Storage storage = null; public Producer(String name, Storage storage) { this.name = name; this.storage = storage; } @Override public void run() { int i = 0; try { while (true) { System.out.println(name + "已经生产一个: id为" + i + "的商品"); System.out.println("==========================="); Product product = new Product(i++); storage.push(product); Thread.sleep(100); } } catch (InterruptedException e) { e.printStackTrace(); } } } 
  • 定义消费者
public class Consumer implements Runnable { private String name; private Storage storage = null; public Consumer(String name, Storage s) { this.name = name; this.storage = s; } @Override public void run() { try { while (true) { Product product = storage.pop(); System.out.println(name + "已经消费一个: id为" + product.getId() + "的商品"); System.out.println("==========================="); Thread.sleep(500); } } catch (InterruptedException e) { e.printStackTrace(); } } } 
  • 测试demo
public class ProducterConsumerDemo {

    public static void main(String[] args) { Storage storage = new Storage(); ExecutorService service = Executors.newCachedThreadPool(); Producer p0 = new Producer("腾讯", storage); Consumer c0 = new Consumer("cmazxiaoma", storage); service.submit(p0); service.submit(c0); service.shutdown(); } } 
 
image.png
 
image.png

我们可以清晰看到在"腾讯已经生产一个:id为13的商品"之前,生产者是随便的生产,消费者是随便的消费,生产者的速度远远大于消费者的速度。然而在"腾讯已经生产一个:id为13的商品"之后,累积的商品数量已经要到达BlockingQueue的最大容量10了。此时生产者已经被阻塞了,已经不能再生产了,只有当消费者开始产品时,才能唤醒生产者。所以之后的打印内容就很有规律了:腾讯一生产商品,cmazxiaoma就开始消费。

从这个例子中,我们可以看到BlockingQueue通过平衡生产者和消费者的处理能力,因此提高了整体处理数据的速度。


死锁和活锁

  • 死锁:两个或者多个线程相互等待对方释放锁,则会出现循环等待的现象,也就是死锁。Java虚拟机没有有效的措施去解决死锁情况,所以在多线程编程中应该采用措施去避免死锁的出现。

  • 活锁:任务或者执行者没有被阻塞,由于某些条件没有满足,导致一直重复尝试 -> 失败 -> 尝试 -> 失败。活锁和死锁的区别在于,处于活锁的实体在不断的改变状态。而处于死锁的实体表现为等待,活锁有可能自行解开,死锁则不能。


死锁产生的原因以及四个必要条件

  • 产生死锁的原因:

    • 系统资源不足。
    • 资源分配不当。
    • 进程运行推进的顺序不合适。
  • 发生死锁的必要条件:

    • 互斥条件: 一个资源只能被一个进程占用,直到被该进程释放。

    • 请求和保持条件:一个进程因请求被占用资源而发生阻塞时,对已获得的资源保持不放。

    • 不可剥夺条件:任何一个资源在没被该进程释放之前,任何其他进程都无法对它进行剥夺占用。

    • 循环等待条件:当发生死锁时,所等待的进程必定会发生环路,造成永久阻塞。

  • 防止死锁的一些方法:

    • 破除互斥等待:一般无法做到。

    • 破除请求和保持:一次性获取所有的资源。

    • 破除循环等待:按顺序获取资源。

    • 破除无法剥夺的等待:加入超时机制。

  • 手写死锁的demo

public class DeadLockDemo {
    public static String obj1 = "obj1"; public static String obj2 = "obj2"; public static void main(String[] args) { Thread a = new Thread(new LockThread1()); Thread b = new Thread(new LockThread2()); a.start(); b.start(); } } class LockThread1 implements Runnable { @Override public void run() { System.out.println("lockThread1 running"); while (true) { synchronized (DeadLockDemo.obj1) { System.out.println("lockThrea1 lock obj1"); try { Thread.sleep(3000); synchronized (DeadLockDemo.obj2) { System.out.println("lockThrea1 lock obj2"); } } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } } } class LockThread2 implements Runnable { @Override public void run() { System.out.println("lockThread2 running"); while (true) { synchronized (DeadLockDemo.obj2) { System.out.println("lockThrea2 lock obj2"); try { Thread.sleep(3000); synchronized (DeadLockDemo.obj1) { System.out.println("lockThrea2 lock obj1"); } } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } } } 
 
image.png

很明显,发生了死锁现象,美滋滋。


线程池

  • 首先来说线程的好处。

    • 重用存在的线程,减少对象创建,消亡的开销,性能佳。

    • 可有效控制最大并发线程数,提高系统资源的使用率,同时避免过多资源竞争,避免阻塞。

    • 提供定时定期执行,单线程,并发数控制等功能。

  • 我们来看看ThreadPoolExecutor的构造器。

    /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default thread factory.
     *
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the * pool * @param keepAliveTime when the number of threads is greater than * the core, this is the maximum time that excess idle threads * will wait for new tasks before terminating. * @param unit the time unit for the {@code keepAliveTime} argument * @param workQueue the queue to use for holding tasks before they are * executed. This queue will hold only the {@code Runnable} * tasks submitted by the {@code execute} method. * @param handler the handler to use when execution is blocked * because the thread bounds and queue capacities are reached * @throws IllegalArgumentException if one of the following holds:<br> * {@code corePoolSize < 0}<br> * {@code keepAliveTime < 0}<br> * {@code maximumPoolSize <= 0}<br> * {@code maximumPoolSize < corePoolSize} * @throws NullPointerException if {@code workQueue} * or {@code handler} is null */ public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), handler); } 

通过阅读注释,我们可以知道参数的含义:

  • corePoolSize:核心池的大小,默认情况下,在创建线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程来执行任务,在线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列中。

  • maximumPoolSize:线程池最大的线程数。

  • keepAliveTime:表示线程没有任务执行时,最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize

  • unit:参数keepAliveTime的时间单位。

  • workQueue:一个阻塞队列,用来存储等待执行的任务。有ArrayBlockingQueueLinkedBlockingQueueSynchronousQueue

  • threadFactory:线程工厂,主要用来创建线程。

  • handler:表示当拒绝处理任务时的策略。我们可以在ThreadPoolExecutor类中,看到4种拒绝策略。

    • AbortPolicy,拒绝处理任务时会抛出一个RejectedExecutionException异常。
    /**
     * A handler for rejected tasks that throws a
     * {@code RejectedExecutionException}.
     */
    public static class AbortPolicy implements RejectedExecutionHandler { /** * Creates an {@code AbortPolicy}. */ public AbortPolicy() { } /** * Always throws RejectedExecutionException. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task * @throws RejectedExecutionException always */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { throw new RejectedExecutionException("Task " + r.toString() + " rejected from " + e.toString()); } } 
  • DiscardPolicy,拒绝处理任务时默认丢弃该任务。
    /**
     * A handler for rejected tasks that silently discards the
     * rejected task.
     */
    public static class DiscardPolicy implements RejectedExecutionHandler { /** * Creates a {@code DiscardPolicy}. */ public DiscardPolicy() { } /** * Does nothing, which has the effect of discarding task r. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { } } 
  • DiscardOldestPolicy,去处理拒绝的任务,丢弃最旧的未处理的任务,然后重新执行该任务。除非执行者被关闭,在这种情况下,任务会被丢弃。
   /**
     * A handler for rejected tasks that discards the oldest unhandled
     * request and then retries {@code execute}, unless the executor
     * is shut down, in which case the task is discarded.
     */
    public static class DiscardOldestPolicy implements RejectedExecutionHandler { /** * Creates a {@code DiscardOldestPolicy} for the given executor. */ public DiscardOldestPolicy() { } /** * Obtains and ignores the next task that the executor * would otherwise execute, if one is immediately available, * and then retries execution of task r, unless the executor * is shut down, in which case task r is instead discarded. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { if (!e.isShutdown()) { e.getQueue().poll(); e.execute(r); } } } } 
  • CallerRunsPolicy,拒绝的任务由调用线程去处理,除非执行者被关闭,那么拒绝的任务直接丢弃。
 /**
     * A handler for rejected tasks that runs the rejected task
     * directly in the calling thread of the {@code execute} method,
     * unless the executor has been shut down, in which case the task
     * is discarded.
     */
    public static class CallerRunsPolicy implements RejectedExecutionHandler { /** * Creates a {@code CallerRunsPolicy}. */ public CallerRunsPolicy() { } /** * Executes task r in the caller's thread, unless the executor * has been shut down, in which case the task is discarded. * * @param r the runnable task requested to be executed * @param e the executor attempting to execute this task */ public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { if (!e.isShutdown()) { r.run(); } } } 
  • Java通过Executors提供了4种线程池,分别为:
    • newCachedThreadPool:创建一个可缓存线程池,里面有我们需要的线程。但是当线程池里面的线程可用的时候,我们可以重用它们。当我们需要执行生命周期很短的任务时,我们将重复使用之前构造的线程处理任务,这样线程池通常能提高性能。如果没有现成的线程可使用,会创建一个新的线程并添加到线程池中。如果有线程在60s中未使用,我们会终结它并把它从缓存中删除。因此一个闲置时间足够长的线程池,将不会消耗任何资源。如果我们需要自定义超时参数,我们可以通过ThreadPoolExecutor进行构建线程池。
    /**
     * Creates a thread pool that creates new threads as needed, but
     * will reuse previously constructed threads when they are
     * available.  These pools will typically improve the performance
     * of programs that execute many short-lived asynchronous tasks.
     * Calls to {@code execute} will reuse previously constructed
     * threads if available. If no existing thread is available, a new
     * thread will be created and added to the pool. Threads that have
     * not been used for sixty seconds are terminated and removed from
     * the cache. Thus, a pool that remains idle for long enough will
     * not consume any resources. Note that pools with similar
     * properties but different details (for example, timeout parameters)
     * may be created using {@link ThreadPoolExecutor} constructors.
     *
     * @return the newly created thread pool
     */
    public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } 
  • newFixedThreadPool:定长线程池,可控制并发数,超出指定数量的线程将在队列中等待。创建一个线程池,重用固定的数量的线程池,使用的是共享的无界队列。在任何时候,至多nThreads线程被激活的处理事务。当所有的线程处于繁忙的状态下,有其他的任务被提交过来,它们会在队列中等待,直到有可用的线程为止。如果任何线程在执行期间由于失败而终止,在shutdown之前,如果有需要的话,将会有新的线程去取代它并执行后续任务。线程池中的存在会一直存在除非明确的进行shutdown
    /**
     * Creates a thread pool that reuses a fixed number of threads
     * operating off a shared unbounded queue.  At any point, at most
     * {@code nThreads} threads will be active processing tasks.
     * If additional tasks are submitted when all threads are active,
     * they will wait in the queue until a thread is available.
     * If any thread terminates due to a failure during execution
     * prior to shutdown, a new one will take its place if needed to
     * execute subsequent tasks.  The threads in the pool will exist
     * until it is explicitly {@link ExecutorService#shutdown shutdown}.
     *
     * @param nThreads the number of threads in the pool
     * @return the newly created thread pool * @throws IllegalArgumentException if {@code nThreads <= 0} */ public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } 
  • newScheduledThreadPool:创建一个线程池,可以调度命令在给定的延迟后运行,或定时执行。其corePoolSize参数是保留在线程池中的线程数量,即使它们闲置。
    /**
     * Creates a thread pool that can schedule commands to run after a
     * given delay, or to execute periodically.
     * @param corePoolSize the number of threads to keep in the pool,
     * even if they are idle
     * @return a newly created scheduled thread pool
     * @throws IllegalArgumentException if {@code corePoolSize < 0} */ public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) { return new ScheduledThreadPoolExecutor(corePoolSize); } /** * Creates a new {@code ScheduledThreadPoolExecutor} with the * given core pool size. * * @param corePoolSize the number of threads to keep in the pool, even * if they are idle, unless {@code allowCoreThreadTimeOut} is set * @throws IllegalArgumentException if {@code corePoolSize < 0} */ public ScheduledThreadPoolExecutor(int corePoolSize) { super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS, new DelayedWorkQueue()); } 
  • newSingleThreadExecutor:创建一个使用单线程执行无界队列的Executor。(如果这个单线程在关闭之前的执行期由于失败而终止,如果需要执行后续任务的话,那么新的线程会取代它)可以保证任务保持按顺序进行,并且在任何给定时间不会超过一个任务处于活跃状态。它返回的executor不同于newFixedThreadPool返回的executornewFixedThreadPool返回的executor保证不需要重新配置,即可使用其他的线程。
    /**
     * Creates an Executor that uses a single worker thread operating
     * off an unbounded queue. (Note however that if this single
     * thread terminates due to a failure during execution prior to
     * shutdown, a new one will take its place if needed to execute
     * subsequent tasks.)  Tasks are guaranteed to execute
     * sequentially, and no more than one task will be active at any
     * given time. Unlike the otherwise equivalent
     * {@code newFixedThreadPool(1)} the returned executor is
     * guaranteed not to be reconfigurable to use additional threads.
     *
     * @return the newly created single-threaded Executor
     */
    public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } 

怎么理解无界队列和有界队列

ArrayBlockingQueue就是一个有界队列,而LinkedBlockingQueueSynchronousQueue则是无界队列。

  • SynchronousQueue:它是无界的,是一种无缓冲的等待队列,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走才能继续添加。有2种模式,一个是公平模式,采用的是公平锁,并配合一个FIFO队列(Queue)来管理多余的生产者和消费者。另一个是非公平模式,采用的是非公平锁,并配合一个LIFO(Stack)来管理多余的生产者和消费者,这也是SynchronousQueue默认的模式。后一者模式,如果生产者和消费者的处理速度有差距的话,很容易出现饥渴情况进而导致有些数据得不到处理。(公平锁:加锁前检查是否有排队的线程,优先排队等待的线程,先到先得。 非公平锁:加锁时不考虑排队等待问题,直接尝试获取锁,获取不到自动到队尾等待)

  • LinkedBlockingQueue:它是一个无界的,是一个无界缓存的等待队列。LinkedBlockingQueue之所以能高效的处理并发数据,正因为消费者和生产者分别采用了独立的锁来控制数据的同步,这也意味着在高并发的情况下,生产者和消费者可以并行的操作队列中的数据,以此来提高整个队列的并发性能。

    /**
     * Tail of linked list.
     * Invariant: last.next == null
     */
    private transient Node<E> last;

    /** Lock held by take, poll, etc */
    private final ReentrantLock takeLock = new ReentrantLock(); /** Wait queue for waiting takes */ private final Condition notEmpty = takeLock.newCondition(); /** Lock held by put, offer, etc */ private final ReentrantLock putLock = new ReentrantLock(); /** Wait queue for waiting puts */ private final Condition notFull = putLock.newCondition(); 
  • ArrayBlockingQueue:它是有界的,是一个有界缓存的等待队列。内部维护着一个定长数据缓存队列,由数组构成。takeIndex标识着队列的头部,putIndex标识着队列的尾部。ArrayBlockingQueue只有一个主锁,证明生产者和消费者无法并行运行。
    /** The queued items */
    final Object[] items;

    /** items index for next take, poll, peek or remove */
    int takeIndex;

    /** items index for next put, offer, or add */
    int putIndex;

    /** Number of elements in the queue */ int count; /* * Concurrency control uses the classic two-condition algorithm * found in any textbook. */ /** Main lock guarding all access */ final ReentrantLock lock; /** Condition for waiting takes */ private final Condition notEmpty; /** Condition for waiting puts */ private final Condition notFull; /** * Shared state for currently active iterators, or null if there * are known not to be any. Allows queue operations to update * iterator state. */ transient Itrs itrs = null; 

无界队列和有界队列其实会给ThreadPoolExecutor造成一定的影响。

  • corePoolSize = maximumPoolSize下,有界队列也满了的话,那么线程池就会采取拒绝任务策略。

  • 与有界队列相比,除非系统资源耗尽,否则无界的任务队列不存在任务入队失败的情况。如果任务创建和处理的速度差异很大,无界队列会快速增长,直到耗尽内存。


ReetrantLock、Synchronized、ReadWriteLock

Lockjdk1.5引进的,ReetrantLockjdk1.6引进的。上一次二面机器人公司,就是挂在这里了。面试官让我说说它们的源码实现以及需求场景。

使用场景:

  • 当读写频率几乎相等,而且不需要特殊需求的时候,优先考虑synchronized

  • 当我们需要定制我们自己的Lock时,或者需要更多的功能(类似定时锁,可中断锁等
    待),我们可以使用ReetrantLock

  • 当我们很少的进行写操作,更多的读操作,并且读操作是一个相对耗时的操作,那么就可以使用ReadWriteLock

  • Synchronized是一种互斥锁。在实际开发中,当某个变量需要在多个线程之间共享的话,需要分析具体场景。如果多个线程对该共享变量的读和写没有竞争关系,则可以使用Concurrent包下提供的并发数据结构。但是如果多个线程对共享变量之间的读和写之间有竞争关系的话,则需要锁住整个变量了。SynchronizedJava内置锁,JVM是通过monitorentermonitorexit指令实现内置锁。

    • 每个对象都有一个monitor锁,当monitor被占用时,该对象就处于锁定状态,其他试图访问该对象的线程将会被阻塞。

    • 对于同一个线程来说,monitor是可重入的,重入的时候会将占有数加1。

    • 当一个线程试图访问某一个变量时,如果发现该变量的monitor占有数为0,就可以美滋滋的占用该对象,如果大于等于1的话,那么苦滋滋的进入阻塞状态。

    • 执行monitorexit的线程必须是持有monitor的某一个对象。当执行完这个命令时,如果占用数为0,则当前线程释放monitor

  • ReetrantLock是基于AQSAbstractQueuedSynchronizer)的锁。

    • 有一个state变量,初始值为0,假设当前线程为A,每当A获取一次锁,state++。每当A释放一次锁的时候,state--

    • A拥有锁的时候,state肯定大于0B线程尝试获取锁的时候,会对这个state有一个CAS(0,1)的操作,尝试几次失败后就挂起线程,进入等待队列。

    • 如果A线程恰好释放锁,state等于0,就会去唤醒等待队列中的BB被唤醒之后回去检查这个state的值,尝试CAS(0,1),如果这时恰好C线程也尝试争抢这把锁。

    • 公平锁的实现,C发现线程B在等待队列,直接将自己进入等待队列并挂起,然后B获得锁。

    • 非公平锁的实现,C直接尝试CAS(0,1)操作,并成功改变了state的值,B获得锁失败,再次挂起。BC之前尝试获取锁,而最终C抢到了锁。



作者:cmazxiaoma
链接:https://www.jianshu.com/p/ab5ae289854a
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

猜你喜欢

转载自www.cnblogs.com/duwamish/p/10787575.html
今日推荐