数据结构-二叉搜索树的操作集

题目

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  • 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数DeleteX从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

运算结果

Case Hint Result Run Time Memory
0 sample等价 Accepted 2 ms 296 KB
1 左斜,Find小于最小、大于最大,delete小于最小、大于最大、头尾和中间 Accepted 2 ms 228 KB
2 右斜,Find小于最小、大于最大,delete小于最小、大于最大、头尾和中间 Accepted 2 ms 384 KB
3 只有1个结点,删除成空树 Accepted 2 ms 228 KB
4 空树 Accepted 2 ms 296 KB

程序


#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

//将X插入二叉搜索树BST并返回结果树的根结点指针
BinTree Insert( BinTree BST, ElementType X );
//将X从二叉搜索树BST中删除,并返回结果树的根结点指针
//如果X不在树中,则打印一行Not Found并返回原树的根结点指针
BinTree Delete( BinTree BST, ElementType X );
//在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针
Position Find( BinTree BST, ElementType X );
//返回二叉搜索树BST中最小元结点的指针
Position FindMin( BinTree BST );
//返回二叉搜索树BST中最大元结点的指针
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
     /*//以下为正式算法
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");
    */

    //测试用例
    N = 10;
    int arr[10] = {5,8,6,2,4,1,0,10,9,7};
    for ( i=0; i<N; i++ ) {
        X = arr[i];
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    N = 5;
    int arr1[5] = {6,3,10,0,5};
    for( i=0; i<N; i++ ) {
        X = arr1[i];
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    N = 5;
    int arr2[5] = {5,7,0,10,3};
    for( i=0; i<N; i++ ) {
        X = arr2[i];
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");
    //以上为测试用例


    return 0;
}

//以下为测试函数
void PreorderTraversal( BinTree BT )
{
    if(BT){
        printf("%d ", BT->Data);
        PreorderTraversal(BT->Left);
        PreorderTraversal(BT->Right);
    }
}
void InorderTraversal( BinTree BT )
{
    if(BT){
        InorderTraversal(BT->Left);
        printf("%d ", BT->Data);
        InorderTraversal(BT->Right);
    }
}
//以上为测试函数


/* 你的代码将被嵌在这里 */
BinTree Insert( BinTree BST, ElementType X )
{
    //递归出口设计:遍历到空结点
    if(!BST){
        BST = (BinTree)malloc(sizeof(struct TNode));
        BST->Data = X;
        BST->Left = BST->Right = NULL;
        return BST;
    }
    //递归逻辑:
    //1、判断X归属于哪个子树,并插入
    else if(X < BST->Data){
        BST->Left = Insert(BST->Left, X);
    }
    else if(X > BST->Data){
        BST->Right = Insert(BST->Right, X);
    }
    return BST;
}
BinTree Delete( BinTree BST, ElementType X )
{
    //递归出口条件:1、未找到,则打印Not Found,并返回原树的根节点指针
    //2、找到,删除结点,并返回结果树的根结点指针
    if(!BST){
        //printf("%d ", X);
        printf("Not Found");printf("\n");
        return NULL;
    }

    else if(X == BST->Data){
        //删除的是叶结点:找到该结点,并且左右孩子为空
        //删除方法:直接删除,并返回空指针
        if((BST->Left == NULL) && (BST->Right == NULL)){
            free(BST);
            return NULL;
        }
        //删除的结点只有一个孩子:只有左孩子或者右孩子
        //删除方法:返回孩子结点
        if((BST->Left != NULL) && (BST->Right == NULL)){
            BinTree LeftSubTree;
            LeftSubTree = BST->Left;
            free(BST);
            return LeftSubTree;
        }
        if((BST->Left == NULL) && (BST->Right != NULL)){
            BinTree RightSubTree;
            RightSubTree = BST->Right;
            free(BST);
            return RightSubTree;
        }
        //删除的结点有两个孩子
        //删除方法:用右子树的最小元素或左子树的最大元素代替此结点(此处选前者)
        if((BST->Left != NULL) && (BST->Right != NULL)){
            BinTree MinRightSubNode = FindMin(BST->Right);
            BST->Data = MinRightSubNode->Data;
            BST->Right = Delete(BST->Right, BST->Data);
            return BST;
        }
    }
    else if(X < BST->Data){
        BST->Left = Delete(BST->Left, X);
        return BST;
    }
    else if(X > BST->Data){
        BST->Right = Delete(BST->Right, X);
        return BST;
    }
}

Position Find( BinTree BST, ElementType X )
{
    //递归出口条件:1、未找到,即指针为空,返回空指针;2、找到,返回指针
    if(!BST){
        return NULL;
    }
    else if(X == BST->Data){
        return BST;
    }
    else if(X < BST->Data){
        Find(BST->Left, X);
    }
    else if(X > BST->Data){
        Find(BST->Right, X);
    }
}
Position FindMin( BinTree BST )
{
    if(BST){
        if(!BST->Left){
            return BST;
        }
        FindMin(BST->Left);
    }
    else
        return BST;
}
Position FindMax( BinTree BST )
{
    if(BST){
        if(!BST->Right){
            return BST;
        }
    FindMax(BST->Right);
    }
    else
        return BST;
}

猜你喜欢

转载自blog.csdn.net/Brianone/article/details/89321362