Linux ALSA声卡驱动之三 PCM设备的创建

               

1. PCM是什么


        PCM是英文Pulse-code modulation的缩写,中文译名是脉冲编码调制。我们知道在现实生活中,人耳听到的声音是模拟信号,PCM就是要把声音从模拟转换成数字信号的一种技术,他的原理简单地说就是利用一个固定的频率对模拟信号进行采样,采样后的信号在波形上看就像一串连续的幅值不一的脉冲,把这些脉冲的幅值按一定的精度进行量化,这些量化后的数值被连续地输出、传输、处理或记录到存储介质中,所有这些组成了数字音频的产生过程。

           PCM信号的两个重要指标是采样频率和量化精度,目前,CD音频的采样频率通常为44100Hz,量化精度是16bit。通常,播放音乐时,应用程序从存储介质中读取音频数据(MP3、WMA、AAC......),经过解码后,最终送到音频驱动程序中的就是PCM数据,反过来,在录音时,音频驱动不停地把采样所得的PCM数据送回给应用程序,由应用程序完成压缩、存储等任务。所以,音频驱动的两大核心任务就是:

  • playback    如何把用户空间的应用程序发过来的PCM数据,转化为人耳可以辨别的模拟音频
  • capture     把mic拾取到得模拟信号,经过采样、量化,转换为PCM信号送回给用户空间的应用程序

2. alsa-driver中的PCM中间层


      ALSA已经为我们实现了功能强劲的PCM中间层,自己的驱动中只要实现一些底层的需要访问硬件的函数即可。

      要访问PCM的中间层代码,你首先要包含头文件<sound/pcm.h>,另外,如果需要访问一些与 hw_param相关的函数,可能也要包含<sound/pcm_params.h>。

      每个声卡最多可以包含4个pcm的实例,每个pcm实例对应一个pcm设备文件。pcm实例数量的这种限制源于linux设备号所占用的位大小,如果以后使用64位的设备号,我们将可以创建更多的pcm实例。不过大多数情况下,在嵌入式设备中,一个pcm实例已经足够了。

      一个pcm实例由一个playback stream和一个capture stream组成,这两个stream又分别有一个或多个substreams组成。

                    图2.1  声卡中的pcm结构

       在嵌入式系统中,通常不会像图2.1中这么复杂,大多数情况下是一个声卡,一个pcm实例,pcm下面有一个playback stream和capture stream,playback和capture下面各自有一个substream。

       下面一张图列出了pcm中间层几个重要的结构,他可以让我们从uml的角度看一看这列结构的关系,理清他们之间的关系,对我们理解pcm中间层的实现方式。

 

             图2.2  pcm中间层的几个重要的结构体的关系图 

  • snd_pcm是挂在snd_card下面的一个snd_device,此snd_device保存在snd_card->devices列表中,snd_pcm保存在snd_device->device_data中。
  • snd_pcm中的字段:streams[2],该数组中的两个元素指向两个snd_pcm_str结构,分别代表playback stream和capture stream
  • snd_pcm_str中的substream字段,指向snd_pcm_substream结构
  • snd_pcm_substream是pcm中间层的核心,绝大部分任务都是在substream中处理,尤其是他的ops(snd_pcm_ops)字段,许多user空间的应用程序通过alsa-lib对驱动程序的请求都是由该结构中的函数处理。它的runtime字段则指向snd_pcm_runtime结构,snd_pcm_runtime记录这substream的一些重要的软件和硬件运行环境和参数。
  • 相关数据结构主要定义如下:
struct snd_card {        ... void *private_data;  /* private data for soundcard */ void (*private_free) (struct snd_card *card); /* callback for freeing of ...       private data */ struct list_head devices; /* devices: snd_device列表*/        ...};struct snd_device { struct list_head list;  /* list of registered devices */ struct snd_card *card;  /* card which holds this device */ snd_device_state_t state; /* state of the device */ snd_device_type_t type;  /* device type */ void *device_data;  /* device structure: 保存具体snd_device对象指针,如snd_pcm */ struct snd_device_ops *ops; /* operations:存有具体snd_device的操作,如snd_pcm*/};struct snd_device_ops { int (*dev_free)(struct snd_device *dev); int (*dev_register)(struct snd_device *dev);         /* dev_register: 在snd_card_register时被调用,且创建/dev/snd下的设备文件节点 */ int (*dev_disconnect)(struct snd_device *dev);};如snd_pcm的snd_device_ops为: static struct snd_device_ops ops = {  .dev_free = snd_pcm_dev_free,  .dev_register = snd_pcm_dev_register,  .dev_disconnect = snd_pcm_dev_disconnect, };// pcm设备相关数据结构:struct snd_pcm { struct snd_card *card;        ...          struct snd_pcm_str streams[2];        ...};struct snd_pcm_str { int stream;  /* stream (direction) */ struct snd_pcm *pcm; /* -- substreams -- */ unsigned int substream_count; unsigned int substream_opened; struct snd_pcm_substream *substream;  /* substream 列表 */        ...};struct snd_pcm_substream {        ... /* -- hardware operations -- */ struct snd_pcm_ops *ops;    /* 驱动对数据的操作 */ /* -- runtime information -- */ struct snd_pcm_runtime *runtime; /* 如通道数、采样率等信息 */       /* -- next substream -- */ struct snd_pcm_substream *next;  /* 通过它构成了substream链表 */ /* -- linked substreams -- */ struct list_head link_list; /* linked list member */};struct snd_pcm_ops { int (*open)(struct snd_pcm_substream *substream); int (*close)(struct snd_pcm_substream *substream); int (*ioctl)(struct snd_pcm_substream * substream,       unsigned int cmd, void *arg); int (*hw_params)(struct snd_pcm_substream *substream,    struct snd_pcm_hw_params *params); int (*hw_free)(struct snd_pcm_substream *substream); int (*prepare)(struct snd_pcm_substream *substream); int (*trigger)(struct snd_pcm_substream *substream, int cmd); snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *substream); int (*copy)(struct snd_pcm_substream *substream, int channel,      snd_pcm_uframes_t pos,      void __user *buf, snd_pcm_uframes_t count); int (*silence)(struct snd_pcm_substream *substream, int channel,          snd_pcm_uframes_t pos, snd_pcm_uframes_t count); struct page *(*page)(struct snd_pcm_substream *substream,        unsigned long offset); int (*mmap)(struct snd_pcm_substream *substream, struct vm_area_struct *vma); int (*ack)(struct snd_pcm_substream *substream);}

 3. 新建一个pcm  


  •  alsa-driver的中间层已经为我们提供了新建pcm的api:

       int snd_pcm_new(struct snd_card *card, const char *id, int device, int playback_count, int capture_count,
                                     struct snd_pcm ** rpcm);

参数device: 表示目前创建的是该声卡下的第几个pcm,第一个pcm设备从0开始。

参数playback_count: 表示该pcm将会有几个playback substream。

参数capture_count: 表示该pcm将会有几个capture substream。

  • 另一个用于设置pcm操作函数接口的api:

         void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops);

         --设定指定方向的snd_pcm_str中的每个snd_pcm_substream的操作为此snd_pcm_ops,snd_pcm_ops定义如下: 

struct snd_pcm_ops { int (*open)(struct snd_pcm_substream *substream); int (*close)(struct snd_pcm_substream *substream); int (*ioctl)(struct snd_pcm_substream * substream,       unsigned int cmd, void *arg); int (*hw_params)(struct snd_pcm_substream *substream,    struct snd_pcm_hw_params *params); int (*hw_free)(struct snd_pcm_substream *substream); int (*prepare)(struct snd_pcm_substream *substream); int (*trigger)(struct snd_pcm_substream *substream, int cmd); snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *substream); int (*copy)(struct snd_pcm_substream *substream, int channel,      snd_pcm_uframes_t pos,      void __user *buf, snd_pcm_uframes_t count); int (*silence)(struct snd_pcm_substream *substream, int channel,          snd_pcm_uframes_t pos, snd_pcm_uframes_t count); struct page *(*page)(struct snd_pcm_substream *substream,        unsigned long offset); int (*mmap)(struct snd_pcm_substream *substream, struct vm_area_struct *vma); int (*ack)(struct snd_pcm_substream *substream);}

        新建一个pcm可以用下面一张新建pcm的调用的序列图进行描述:

                                                       图3.1 新建pcm的序列图上

       上图中snd_device_new中的ops定义如下:

 static struct snd_device_ops ops = {  .dev_free = snd_pcm_dev_free,  .dev_register = snd_pcm_dev_register,  .dev_disconnect = snd_pcm_dev_disconnect, };
  • snd_card_create    pcm是声卡下的一个设备(部件),所以第一步是要创建一个声卡
  • snd_pcm_new    调用该api创建一个pcm,在该api中会做以下事情
    • 如果有,建立playback stream,相应的substream也同时建立
    • 如果有,建立capture stream,相应的substream也同时建立
    • 调用snd_device_new()把该pcm挂到声卡的snd_card->devices链表中,参数ops中的dev_register字段指向了函数snd_pcm_dev_register,这个回调函数会在声卡的注册阶段被调用。
  • snd_pcm_set_ops    设置操作该pcm的控制/操作接口函数,参数中的snd_pcm_ops结构中的函数通常就是我们驱动要实现的函数
  • snd_card_register    注册声卡,在这个阶段会遍历声卡下的所有逻辑设备,并且调用各设备的注册回调函数,对于pcm,就是第二步提到的snd_pcm_dev_register函数,该回调函数建立了和用户空间应用程序(alsa-lib)通信所用的设备文件节点:/dev/snd/pcmCxxDxxp和/dev/snd/pcmCxxDxxc

4. 设备文件节点的建立(dev/snd/pcmCxxDxxp、pcmCxxDxxc)


4.1 struct snd_minor

        每个snd_minor结构体保存了声卡下某个逻辑设备的上下文信息,它在逻辑设备建立阶段被填充,在逻辑设备被使用时就可以从该结构体中得到相应的信息。pcm设备也不例外,也需要使用该结构体。该结构体在include/sound/core.h中定义。

struct snd_minor { int type;   /* SNDRV_DEVICE_TYPE_XXX */ int card;   /* card number */ int device;   /* device number */ const struct file_operations *f_ops; /* file operations */ void *private_data;  /* private data for f_ops->open, 如snd_pcm对象 */ struct device *dev;  /* device for sysfs */};

      在sound/sound.c中定义了一个snd_minor指针的全局数组:

static struct snd_minor *snd_minors[256];

      前面说过,在声卡的注册阶段(snd_card_register),会调用pcm的回调函数snd_pcm_dev_register(),这个函数里会调用函数snd_register_device_for_dev():

static int snd_pcm_dev_register(struct snd_device *device){    ...... /* register pcm */ err = snd_register_device_for_dev(devtype, pcm->card,             pcm->device,     &snd_pcm_f_ops[cidx],     pcm, str, dev);    ......}

     我们再进入snd_register_device_for_dev():

int snd_register_device_for_dev(int type, struct snd_card *card, int dev,    const struct file_operations *f_ops,    void *private_data,    const char *name, struct device *device)int minor; struct snd_minor *preg; if (snd_BUG_ON(!name))  return -EINVAL; preg = kmalloc(sizeof *preg, GFP_KERNEL); if (preg == NULL)  return -ENOMEM; preg->type = type; preg->card = card ? card->number : -1; preg->device = dev; preg->f_ops = f_ops; preg->private_data = private_data; mutex_lock(&sound_mutex);#ifdef CONFIG_SND_DYNAMIC_MINORS minor = snd_find_free_minor();#else minor = snd_kernel_minor(type, card, dev); if (minor >= 0 && snd_minors[minor])  minor = -EBUSY;#endif if (minor < 0) {  mutex_unlock(&sound_mutex);  kfree(preg);  return minor; } snd_minors[minor] = preg; preg->dev = device_create(sound_class, device, MKDEV(major, minor),      private_data, "%s", name); if (IS_ERR(preg->dev)) {  snd_minors[minor] = NULL;  mutex_unlock(&sound_mutex);  minor = PTR_ERR(preg->dev);  kfree(preg);  return minor; } mutex_unlock(&sound_mutex); return 0;}
  • 首先,分配并初始化一个snd_minor结构中的各字段
    • type:SNDRV_DEVICE_TYPE_PCM_PLAYBACK/SNDRV_DEVICE_TYPE_PCM_CAPTURE
    • card: card的编号
    • device:pcm实例的编号,大多数情况为0
    • f_ops:snd_pcm_f_ops
    • private_data:指向该snd_pcm的实例对象
  • 根据type,card和pcm的编号,确定数组的索引值minor,minor也作为pcm设备的此设备号
  • 把该snd_minor结构的地址放入全局数组snd_minors[minor]中
  • 最后,调用device_create创建设备节点

4.2 设备文件的建立


        在4.1节的最后,设备文件已经建立,不过4.1节的重点在于snd_minors数组的赋值过程,在本节中,我们把重点放在设备文件中。

        回到pcm的回调函数snd_pcm_dev_register()中:

static int snd_pcm_dev_register(struct snd_device *device)int cidx, err; char str[16]; struct snd_pcm *pcm; struct device *dev; pcm = device->device_data;         ...... for (cidx = 0; cidx < 2; cidx++) {                  ......  switch (cidx) {  case SNDRV_PCM_STREAM_PLAYBACK:   sprintf(str, "pcmC%iD%ip", pcm->card->number, pcm->device);   devtype = SNDRV_DEVICE_TYPE_PCM_PLAYBACK;   break;  case SNDRV_PCM_STREAM_CAPTURE:   sprintf(str, "pcmC%iD%ic", pcm->card->number, pcm->device);   devtype = SNDRV_DEVICE_TYPE_PCM_CAPTURE;   break;  }  /* device pointer to use, pcm->dev takes precedence if   * it is assigned, otherwise fall back to card's device   * if possible */  dev = pcm->dev;  if (!dev)   dev = snd_card_get_device_link(pcm->card);  /* register pcm */  err = snd_register_device_for_dev(devtype, pcm->card,        pcm->device,        &snd_pcm_f_ops[cidx],        pcm, str, dev);                  ...... }         ......}

     以上代码我们可以看出,对于一个pcm设备,可以生成两个设备文件,一个用于playback,一个用于capture,代码中也确定了他们的命名规则:

  • playback  --  pcmCxDxp,通常系统中只有一个声卡和一个pcm,它就是pcmC0D0p
  • capture  --  pcmCxDxc,通常系统中只有一个声卡和一个pcm,它就是pcmC0D0c

snd_pcm_f_ops

     snd_pcm_f_ops是一个标准的文件系统file_operations结构数组,它的定义在sound/core/pcm_native.c中:

const struct file_operations snd_pcm_f_ops[2] = { {  .owner =  THIS_MODULE,  .write =  snd_pcm_write,  .aio_write =  snd_pcm_aio_write,  .open =   snd_pcm_playback_open,  .release =  snd_pcm_release,  .llseek =  no_llseek,  .poll =   snd_pcm_playback_poll,  .unlocked_ioctl = snd_pcm_playback_ioctl,  .compat_ioctl =  snd_pcm_ioctl_compat,  .mmap =   snd_pcm_mmap,  .fasync =  snd_pcm_fasync,  .get_unmapped_area = snd_pcm_get_unmapped_area, }, {  .owner =  THIS_MODULE,  .read =   snd_pcm_read,  .aio_read =  snd_pcm_aio_read,  .open =   snd_pcm_capture_open,  .release =  snd_pcm_release,  .llseek =  no_llseek,  .poll =   snd_pcm_capture_poll,  .unlocked_ioctl = snd_pcm_capture_ioctl,  .compat_ioctl =  snd_pcm_ioctl_compat,  .mmap =   snd_pcm_mmap,  .fasync =  snd_pcm_fasync,  .get_unmapped_area = snd_pcm_get_unmapped_area, }};

        snd_pcm_f_ops作为snd_register_device_for_dev的参数被传入,并被记录在snd_minors[minor]中的字段f_ops中。最后,在snd_register_device_for_dev中创建设备节点

 snd_minors[minor] = preg; preg->dev = device_create(sound_class, device, MKDEV(major, minor),      private_data, "%s", name);

4.3 层层深入,从应用程序到驱动层pcm


4.3.1 字符设备注册

      在sound/core/sound.c中有alsa_sound_init()函数,定义如下:

static int __init alsa_sound_init(void){ snd_major = major; snd_ecards_limit = cards_limit; if (register_chrdev(major, "alsa", &snd_fops)) {  snd_printk(KERN_ERR "unable to register native major device number %d/n", major);  return -EIO; } if (snd_info_init() < 0) {  unregister_chrdev(major, "alsa");  return -ENOMEM; } snd_info_minor_register(); return 0;}

       register_chrdev中的参数major与之前创建pcm设备是device_create时的major是同一个<即116>,这样的结果是,当应用程序open设备文件/dev/snd/pcmCxDxp时,会进入snd_fops的open回调函数,我们将在下一节中讲述open的过程。

4.3.2 打开pcm设备

      从上一节中我们得知,open一个pcm设备时,将会调用snd_fops的open回调函数,我们先看看snd_fops的定义:

static const struct file_operations snd_fops ={ .owner = THIS_MODULE, .open =  snd_open};

     进入snd_open函数,它首先从inode中取出次设备号,然后以次设备号为索引,从snd_minors全局数组中取出当初注册pcm设备时填充的snd_minor结构(参看4.1节的内容),然后从snd_minor结构中取出pcm设备的f_ops,并且把file->f_op替换为pcm设备的f_ops,紧接着直接调用pcm设备的f_ops->open(),然后返回。因为file->f_op已经被替换,以后,应用程序的所有read/write/ioctl调用都会进入pcm设备自己的回调函数中,也就是4.2节中提到的snd_pcm_f_ops结构中定义的回调

static int snd_open(struct inode *inode, struct file *file)unsigned int minor = iminor(inode); struct snd_minor *mptr = NULL; const struct file_operations *old_fops; int err = 0if (minor >= ARRAY_SIZE(snd_minors))  return -ENODEV; mutex_lock(&sound_mutex); mptr = snd_minors[minor]; if (mptr == NULL) {  mptr = autoload_device(minor);  if (!mptr) {   mutex_unlock(&sound_mutex);   return -ENODEV;  } } old_fops = file->f_op; file->f_op = fops_get(mptr->f_ops); if (file->f_op == NULL) {  file->f_op = old_fops;  err = -ENODEV; } mutex_unlock(&sound_mutex); if (err < 0)  return err; if (file->f_op->open) {  err = file->f_op->open(inode, file);  if (err) {   fops_put(file->f_op);   file->f_op = fops_get(old_fops);  } } fops_put(old_fops); return err;}

       下面的序列图展示了应用程序如何最终调用到snd_pcm_f_ops结构中的回调函数:



                             图4.3.2.1    应用程序操作pcm设备

    在上图中,file->f_op为snd_pcm_f_ops[0]或snd_pcm_f_ops[1],以playback为例,接下来的调用顺序为:

1) snd_pcm_playback_open(struct inode *inode, struct file *file)->
   /* snd_pcm根据文件节点的minor从snd_minors中获取*/

2) snd_pcm_open(struct file *file, struct snd_pcm *pcm, int stream)->

3) static int snd_pcm_open_file(struct file *file, struct snd_pcm *pcm, int stream, struct snd_pcm_file **rpcm_file)->
snd_pcm_file的定义如下:

struct snd_pcm_file { struct snd_pcm_substream *substream; int no_compat_mmap;};


  a) 调用snd_pcm_open_substream根据stream获取对应的snd_pcm_substream
  b) 创建一个pcm_file对象,并把a)中获取的snd_pcm_substream赋值给pcm_file->substream
  c) file->private_data = pcm_file, 这样根据file->private_data就可以找到对应的snd_pcm_substream
  d) 然后就可以调用snd_pcm_substream->ops执行具体的操作

4.3.3 写PCM设备

写PCM流程如下:

1) snd_pcm_write-> (用户态)
2) write-> (系统调用)
以下为Kernel态:
3) snd_pcm_write(struct file *file, const char __user *buf,
        size_t count, loff_t * offset)
   a) 从file中获取pcm_file
   b) 从pcm_file中获取snd_pcm_substream
4) snd_pcm_lib_write(struct snd_pcm_substream *substream,
                 const void __user *buf, snd_pcm_uframes_t size)
5) snd_pcm_lib_write1(struct snd_pcm_substream *substream,
         unsigned long data,
         snd_pcm_uframes_t size,
         int nonblock,
         transfer_f transfer)
   即:snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
      snd_pcm_lib_write_transfer)
 
6) snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
          unsigned int hwoff,
          unsigned long data, unsigned int off,
          snd_pcm_uframes_t frames)

static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,          unsigned int hwoff,          unsigned long data, unsigned int off,          snd_pcm_uframes_t frames)struct snd_pcm_runtime *runtime = substream->runtime; int err; char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); if (substream->ops->copy) {  if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)   return err; } else {  char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);  if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))   return -EFAULT; } return 0;}


     在此函数中调用snd_pcm_substream->ops->copy来传递数据给ALSA Driver,再由ALSA Driver把此数据发送给hardware playback。

4.3.4 读PCM设备

读PCM流程如下:

1) snd_pcm_read-> (用户态)
2) read-> (系统调用)
以下为Kernel态:
3) snd_pcm_read(struct file *file, char __user *buf,
                size_t count,loff_t * offset)
4) snd_pcm_lib_read(struct snd_pcm_substream *substream,
                   void __user *buf, snd_pcm_uframes_t size)
5) snd_pcm_lib_read1(struct snd_pcm_substream *substream,
        unsigned long data,
        snd_pcm_uframes_t size,
        int nonblock,
        transfer_f transfer)
   
即:snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock,
                                  snd_pcm_lib_read_transfer);

static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,          unsigned int hwoff,         unsigned long data, unsigned int off,         snd_pcm_uframes_t frames)struct snd_pcm_runtime *runtime = substream->runtime; int err; char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); if (substream->ops->copy) {  if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)   return err; } else {  char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);  if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))   return -EFAULT; } return 0;}

5. 总结

    1) 通过device_create创建的设备文件节点中包含major和minor

    2) pcm设备的文件操作(file_operations snd_pcm_f_ops[2])被保存在snd_minors全局数据中,以minor为索引

    3) snd_minors的private_data为snd_pcm实例

    4) open文件节点时,根据其major寻找已经为此major注册的open函数,在此open函数中,则根据其minor在snd_minors中找到对应的f_ops,然后调用此f_ops->open<即snd_pcm_playback_open>


转自:http://blog.csdn.net/droidphone/article/details/6308006

           

猜你喜欢

转载自blog.csdn.net/qq_44884706/article/details/89405959