linux---进程控制

进程控制

fork函数
创建一个子进程。
pid_t fork(void); 失败返回-1;成功返回:① 父进程返回子进程的ID(非负) ②子进程返回 0
pid_t vfork(void);同样时创建一个子进程,但是他是与父进程公用一块虚拟空间,子进程先运行,等到子进程exit(0)的时候父进程才运行。
pid_t类型表示进程ID,但为了表示-1,它是有符号整型。(0不是有效进程ID,init最小,为1)
注意返回值,不是fork函数能返回两个值,而是fork后,fork函数变为两个,父子需【各自】返回一个。
循环创建n个子进程
一次fork函数调用可以创建一个子进程。那么创建N个子进程应该怎样实现呢?
简单想,for(i = 0; i < n; i++) { fork() } 即可。但这样创建的是N个子进程吗?
在这里插入图片描述

  • 循环创建N个子进程

从上图我们可以很清晰的看到,当n为3时候,循环创建了(2^n)-1个子进程,而不是N的子进程。需要在循环的过程,保证子进程不再执行fork ,因此当(fork() == 0)时,子进程应该立即break;才正确。
练习:通过命令行参数指定创建进程的个数,每个进程休眠1S打印自己是第几个被创建的进程。如:第1个子进程休眠0秒打印:“我是第1个子进程”;第2个进程休眠1秒打印:“我是第2个子进程”;第3个进程休眠2秒打印:“我是第3个子进程”。 //fork1.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>


int main(void)
{
    int i;
    pid_t pid;
    printf("xxxxxxxxxxx\n");

for (i = 0; i < 5; i++) {
    pid = fork();
    if (pid == 0) {
        break;
    }
}

if (i < 5) {

    sleep(i);
    printf("I'am %d child , pid = %u\n", i+1, getpid());

} else  {
    sleep(i);
    printf("I'm parent\n");
}

return 0;
}

通过该练习掌握框架:循环创建n个子进程,使用循环因子i对创建的子进程加以区分。
getpid函数
获取当前进程ID
pid_t getpid(void);
getppid函数
获取当前进程的父进程ID
pid_t getppid(void);
区分一个函数是“系统函数”还是“库函数”依据:
② 是否访问内核数据结构
② 是否访问外部硬件资源 二者有任一 → 系统函数;二者均无 → 库函数
getuid函数(了解)
获取当前进程实际用户ID
uid_t getuid(void);
获取当前进程有效用户ID
uid_t geteuid(void);
getgid函数(了解)
获取当前进程使用用户组ID
gid_t getgid(void);
获取当前进程有效用户组ID
gid_t getegid(void);
进程共享
父子进程之间在fork后。有哪些相同,那些相异之处呢?
刚fork之后:
父子相同处: 全局变量、.data、.text、栈、堆、环境变量、用户ID、宿主目录、进程工作目录、信号处理方式…
父子不同处: 1.进程ID 2.fork返回值 3.父进程ID 4.进程运行时间 5.闹钟(定时器) 6.未决信号集
似乎,子进程复制了父进程0-3G用户空间内容,以及父进程的PCB,但pid不同。真的每fork一个子进程都要将父进程的0-3G地址空间完全拷贝一份,然后在映射至物理内存吗?
当然不是!父子进程间遵循读时共享写时复制的原则。这样设计,无论子进程执行父进程的逻辑还是执行自己的逻辑都能节省内存开销。
练习:编写程序测试,父子进程是否共享全局变。

//fork_shared.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int a = 100;            //.data 

int main(void)
{
	pid_t pid;
	pid = fork();

	if(pid == 0){	//son
		a = 2000;
		printf("child, a = %d\n", a);
	} else {
		sleep(1);	//保证son先运行
		printf("parent, a = %d\n", a);
	}

	return 0;
}

重点注意!躲避父子进程共享全局变量的知识误区!
【重点】:父子进程共享:1. 文件描述符(打开文件的结构体) 2. mmap建立的映射区 (进程间通信详解)

特别的,fork之后父进程先执行还是子进程先执行不确定。取决于内核所使用的调度算法。

exec函数族

fork创建子进程后执行的是和父进程相同的程序(但有可能执行不同的代码分支),子进程往往要调用一种exec函数以执行另一个程序。当进程调用一种exec函数时,该进程的用户空间代码和数据完全被新程序替换,从新程序的启动例程开始执行。调用exec并不创建新进程,所以调用exec前后该进程的id并未改变。
将当前进程的.text、.data替换为所要加载的程序的.text、.data,然后让进程从新的.text第一条指令开始执行,但进程ID不变,换核不换壳。
其实有六种以exec开头的函数,统称exec函数:
int execl(const char *path, const char *arg, …);
int execlp(const char *file, const char *arg, …);
int execle(const char *path, const char *arg, …, char *const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);
execlp函数
加载一个进程,借助PATH环境变量
int execlp(const char *file, const char *arg, …); 成功:无返回;失败:-1
参数1:要加载的程序的名字。该函数需要配合PATH环境变量来使用,当PATH中所有目录搜索后没有参数1则出错返回。
该函数通常用来调用系统程序。如:ls、date、cp、cat等命令。
execl函数
加载一个进程, 通过 路径+程序名 来加载。
int execl(const char *path, const char *arg, …); 成功:无返回;失败:-1
对比execlp,如加载"ls"命令带有-l,-F参数
execlp(“ls”, “ls”, “-l”, “-F”, NULL); 使用程序名在PATH中搜索。
execl("/bin/ls", “ls”, “-l”, “-F”, NULL); 使用参数1给出的绝对路径搜索。
execvp函数(了解)
加载一个进程,使用自定义环境变量env
int execvp(const char *file, const char *argv[]);
变参形式: ①… ② argv[] (main函数也是变参函数,形式上等同于 int main(int argc, char *argv0, …))
变参终止条件:① NULL结尾 ② 固参指定
execvp与execlp参数形式不同,原理一致。
练习:将当前系统中的进程信息,打印到文件中。

//exec_ps.c
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
	int fd;

	fd = open("ps.out", O_WRONLY|O_CREAT|O_TRUNC, 0644);
	if(fd < 0){
		perror("open ps.out error");
		exit(1);
	}
	dup2(fd, STDOUT_FILENO);

	execlp("ps", "ps", "ax", NULL);
	//close(fd);

	return 0;
}

exec函数族一般规律(了解)
exec函数一旦调用成功即执行新的程序,不返回。只有失败才返回,错误值-1。所以通常我们直接在exec函数调用后直接调用perror()和exit(),无需if判断。
l (list) 命令行参数列表
p (path) 搜素file时使用path变量
v (vector) 使用命令行参数数组
e (environment) 使用环境变量数组,不使用进程原有的环境变量,设置新加载程序运行的环境变量
事实上,只有execve是真正的系统调用,其它五个函数最终都调用execve,所以execve在man手册第2节,其它函数在man手册第3节。这些函数之间的关系如下图所示。

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/boke_fengwei/article/details/89032647