软件程序编写规范 - 下(仅供参考)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhaozhiyuan111/article/details/89202636

9 质量保证

10 代码编辑、编译、审查

11 代码测试、维护

12


9 质量保证

规则 9-1:在软件设计过程中构筑软件质量。

规则 9-2:代码质量保证优先原则

     (1)正确性,指程序要实现设计要求的功能。

     (2)稳定性、安全性,指程序稳定、可靠、安全。

     (3)可测试性,指程序要具有良好的可测试性。

     (4)规范/可读性,指程序书写风格、命名规则等要符合规范。

     (5)全局效率,指软件系统的整体效率。

     (6)局部效率,指某个模块/子模块/函数的本身效率。

     (7)个人表达方式/个人方便性,指个人编程习惯。

规则 9-3:只引用属于自己的存贮空间。

说明:若模块封装的较好,那么一般不会发生非法引用他人的空间。

规则 9-4:防止引用已经释放的内存空间。

说明:在实际编程过程中,稍不留心就会出现在一个模块中释放了某个内存块(如C语言指针),而另一模块在随后的某个时刻又使用了它。要防止这种情况发生。

规则 9-5:过程/函数中分配的内存,在过程/函数退出之前要释放。

规则 9-6:过程/函数中申请的(为打开文件而使用的)文件句柄,在过程/函数退出之前要关闭。

说明:分配的内存不释放以及文件句柄不关闭,是较常见的错误,而且稍不注意就有可能发生。这类错误往往会引起很严重后果,且难以定位。

示例:下函数在退出之前,没有把分配的内存释放。

typedef unsigned char BYTE;

int example_fun( BYTE gt_len, BYTE *gt_code )

{

    BYTE *gt_buf;

    gt_buf = (BYTE *) malloc (MAX_GT_LENGTH);

    ...  //program code, include check gt_buf if or not NULL.

    

    /* global title length error */

    if (gt_len > MAX_GT_LENGTH)

    {

        return GT_LENGTH_ERROR; // 忘了释放gt_buf

    }

    

    ...  // other program code

}

应改为如下。

int example_fun( BYTE gt_len, BYTE *gt_code )

{

    BYTE *gt_buf;

    gt_buf = (BYTE * ) malloc ( MAX_GT_LENGTH );

    ...  // program code, include check gt_buf if or not NULL.

    

    /* global title length error */

    if (gt_len > MAX_GT_LENGTH)

    {

        free( gt_buf  ); // 退出之前释放gt_buf

        return GT_LENGTH_ERROR;  

    }

    

    ...  // other program code

}

规则 9-7:防止内存操作越界。

说明:内存操作主要是指对数组、指针、内存地址等的操作。内存操作越界是软件系统主要错误之一,后果往往非常严重,所以当我们进行这些操作时一定要仔细小心。

示例:假设某软件系统最多可由10个用户同时使用,用户号为1-10,那么如下程序存在问题。

#define MAX_USR_NUM 10

unsigned char usr_login_flg[MAX_USR_NUM]= "";

void set_usr_login_flg( unsigned char usr_no )

{

    if (!usr_login_flg[usr_no])

    {

        usr_login_flg[usr_no]= TRUE;

    }

}

当usr_no为10时,将使用usr_login_flg越界。可采用如下方式解决。

void set_usr_login_flg( unsigned char usr_no )

{

    if (!usr_login_flg[usr_no - 1])

    

        usr_login_flg[usr_no - 1]= TRUE;

    }

}

规则 9-8:认真处理程序所能遇到的各种出错情况。

规则 9-9:系统运行之初,要初始化有关变量及运行环境,防止未经初始化的变量被引用。

规则 9-10:系统运行之初,要对加载到系统中的数据进行一致性检查。

说明:使用不一致的数据,容易使系统进入混乱状态和不可知状态。

规则 9-11:严禁随意更改其它模块或系统的有关设置和配置。

说明:编程时,不能随心所欲地更改不属于自己模块的有关设置如常量、数组的大小等。

规则 9-12:不能随意改变与其它模块的接口。

规则 9-13:充分了解系统的接口之后,再使用系统提供的功能。

示例:在B型机的各模块与操作系统的接口函数中,有一个要由各模块负责编写的初始化过程,此过程在软件系统加载完成后,由操作系统发送的初始化消息来调度。因此就涉及到初始化消息的类型与消息发送的顺序问题,特别是消息顺序,若没搞清楚就开始编程,很容易引起严重后果。以下示例引自B型曾出现过的实际代码,其中使用了FID_FETCH_DATA与FID_INITIAL初始化消息类型,注意B型机的系统是在FID_FETCH_DATA之前发送FID_INITIAL的。

MID alarm_module_list[MAX_ALARM_MID];

int FAR SYS_ALARM_proc( FID function_id, int handle )

{

    _UI i, j;

    switch ( function_id )

    {

        ... // program code

    

        case FID_INITAIL:

            for (i = 0; i < MAX_ALARM_MID; i++)

            {

                if (alarm_module_list[i]== BAM_MODULE // **)

                   || (alarm_module_list[i]== LOCAL_MODULE)

                {

                    for (j = 0; j < ALARM_CLASS_SUM; j++)

                    {

                        FAR_MALLOC( ... );

                    }

                }

            }

            ... // program code

            break;

    

        case FID_FETCH_DATA:

            ... // program code

            Get_Alarm_Module( );  // 初始化alarm_module_list

            break;

    

        ... // program code

    }

}

由于FID_INITIAL是在FID_FETCH_DATA之前执行的,而初始化alarm_module_list是在FID_FETCH_DATA中进行的,故在FID_INITIAL中(**)处引用alarm_module_list变量时,它还没有被初始化。这是个严重错误。

应如下改正:要么把Get_Alarm_Module函数放在FID_INITIAL中(**)之前;要么就必须考虑(**)处的判断语句是否可以用(不使用alarm_module_list变量的)其它方式替代,或者是否可以取消此判断语句。

规则 9-14:编程时,要防止差1错误。

说明:此类错误一般是由于把“<=”误写成“<”或“>=”误写成“>”等造成的,由此引起的后果,很多情况下是很严重的,所以编程时,一定要在这些地方小心。当编完程序后,应对这些操作符进行彻底检查。

规则 9-15:要时刻注意易混淆的操作符。当编完程序后,应从头至尾检查一遍这些操作符,以防止拼写错误。

说明:形式相近的操作符最容易引起误用,如C/C++中的“=”与“==”、“|”与“||”、“&”与“&&”等,若拼写错了,编译器不一定能够检查出来。

示例:如把“&”写成“&&”,或反之。

ret_flg = (pmsg->ret_flg & RETURN_MASK);  

被写为:

ret_flg = (pmsg->ret_flg && RETURN_MASK);

rpt_flg = (VALID_TASK_NO( taskno ) && DATA_NOT_ZERO( stat_data ));

被写为:

rpt_flg = (VALID_TASK_NO( taskno ) & DATA_NOT_ZERO( stat_data ));

规则 9-16: if语句尽量加上else分支,对没有else分支的语句要小心对待;switch语句必须有default分支。

规则 9-17:Unix下,多线程的中的子线程退出必需采用主动退出方式,即子线程应return出口。

规则 9-18:不要滥用goto语句。

说明:goto语句会破坏程序的结构性,所以除非确实需要,最好不使用goto语句。

建议 9-1:不使用与硬件或操作系统关系很大的语句,而使用建议的标准语句,以提高软件的可移植性和可重用性。 

建议 9-3:精心地构造、划分子模块,并按“接口”部分及“内核”部分合理地组织子模块,以提高“内核”部分的可移植性和可重用性。

说明:对不同产品中的某个功能相同的模块,若能做到其内核部分完全或基本一致,那么无论对产品的测试、维护,还是对以后产品的升级都会有很大帮助。

建议 9-4:精心构造算法,并对其性能、效率进行测试。

建议 9-5:对较关键的算法最好使用其它算法来确认。

建议 9-6:时刻注意表达式是否会上溢、下溢。

示例:如下程序将造成变量下溢。

unsigned char size ;

while (size-- >= 0) //

将出现下溢

{

    ... // program code

}

当size等于0时,再减1不会小于0,而是0xFF,故程序是一个死循环。应如下修改。

char size; // 从unsigned char 改为char

while (size-- >= 0)

{

    ... // program code

}

建议 9-7:使用变量时要注意其边界值的情况。

示例:如C语言中字符型变量,有效值范围为-128到127。故以下表达式的计算存在一定风险。

char chr = 127;

int sum = 200;

chr += 1; // 127为chr的边界值,再加1将使chr上溢到-128,而不是128。

sum += chr; // 故sum的结果不是328,而是72。

若chr与sum为同一种类型,或表达式按如下方式书写,可能会好些。

sum = sum + chr + 1;

建议 9-8:留心程序机器码大小(如指令空间大小、数据空间大小、堆栈空间大小等)是否超出系统有关限制。

建议 9-9:为用户提供良好的接口界面,使用户能较充分地了解系统内部运行状态及有关系统出错情况。

建议 9-10:系统应具有一定的容错能力,对一些错误事件(如用户误操作等)能进行自动补救。

建议 9-11:对一些具有危险性的操作代码(如写硬盘、删数据等)要仔细考虑,防止对数据、硬件等的安全构成危害,以提高系统的安全性。

建议 9-12:使用第三方提供的软件开发工具包或控件时,要注意以下几点:

(1)充分了解应用接口、使用环境及使用时注意事项。

(2)不能过分相信其正确性。

(3)除非必要,不要使用不熟悉的第三方工具包与控件。

说明:使用工具包与控件,可加快程序开发速度,节省时间,但使用之前一定对它有较充分的了解,同时第三方工具包与控件也有可能存在问题。

建议 9-13:资源文件(多语言版本支持),如果资源是对语言敏感的,应让该资源与源代码文件脱离,具体方法有下面几种:使用单独的资源文件、DLL文件或其它单独的描述文件(如数据库格式


10 代码编辑、编译、审查

规则 10-1:打开编译器的所有告警开关对程序进行编译。

规则 10-2:在产品软件(项目组)中,要统一编译开关选项。(此处在编码前确定)

规则 10-3:通过代码走读及审查方式对代码进行检查。

说明:代码走读主要是对程序的编程风格如注释、命名等以及编程时易出错的内容进行检查,可由开发人员自己或开发人员交叉的方式进行;代码审查主要是对程序实现的功能及程序的稳定性、安全性、可靠性等进行检查及评审,可通过自审、交叉审核或指定部门抽查等方式进行。

规则 10-4:测试部测试产品之前,应对代码进行抽查及评审。

建议 10-1:编写代码时要注意随时保存,并定期备份,防止由于断电、硬盘损坏等原因造成代码丢失。

建议 10-2:项目组内,最好使用相同的编辑器,并使用相同的设置选项。

说明:同一项目组最好采用相同的智能语言编辑器,如Muiti Editor,Visual Editor等,并设计、使用一套缩进宏及注释宏等,将缩进等问题交由编辑器处理。

建议 10-3:要小心地使用编辑器提供的块拷贝功能编程。

说明:当某段代码与另一段代码的处理功能相似时,许多开发人员都用编辑器提供的块拷贝功能来完成这段代码的编写。由于程序功能相近,故所使用的变量、采用的表达式等在功能及命名上可能都很相近,所以使用块拷贝时要注意,除了修改相应的程序外,一定要把使用的每个变量仔细查看一遍,以改成正确的。不应指望编译器能查出所有这种错误,比如当使用的是全局变量时,就有可能使某种错误隐藏下来。

建议 10-4:合理地设计软件系统目录,方便开发人员使用。(此处在编码前确定)

说明:方便、合理的软件系统目录,可提高工作效率。目录构造的原则是方便有关源程序的存储、查询、编译、链接等工作,同时目录中还应具有工作目录----所有的编译、链接等工作应在此目录中进行,工具目录----有关文件编辑器、文件查找等工具可存放在此目录中。

建议 10-5:某些语句经编译后产生告警,但如果你认为它是正确的,那么应通过某种手段去掉告警信息。

说明:在Borland C/C++中,可用“#pragma  warn”来关掉或打开某些告警。

示例:

#pragma warn -rvl // 关闭告警

int examples_fun( void )

{

      // 程序,但无return语句。

}

#pragma warn +rvl // 打开告警

编译函数examples_fun时本应产生“函数应有返回值”告警,但由于关掉了此告警信息显示,所以编译时将不会产生此告警提示。

建议 10-6:使用代码检查工具(如C语言用PC-Lint)对源程序检查。

建议 10-7:使用软件工具(如 LogiSCOPE)进行代码审查。


11 代码测试、维护

规则 11-1:单元测试要求至少达到语句覆盖。

规则 11-2:单元测试开始要跟踪每一条语句,并观察数据流及变量的变化。

规则 11-3:清理、整理或优化后的代码要经过审查及测试。

规则 11-4:代码版本升级要经过严格测试。

规则 11-5:使用工具软件对代码版本进行维护。

规则 11-6:正式版本上软件的任何修改都应有详细的文档记录。

建议 11-1:发现错误立即修改,并且要记录下来。

建议 11-2:关键的代码在汇编级跟踪。

建议 11-3:仔细设计并分析测试用例,使测试用例覆盖尽可能多的情况,以提高测试用例的效率。

建议 11-4:尽可能模拟出程序的各种出错情况,对出错处理代码进行充分的测试。

建议 11-5:仔细测试代码处理数据、变量的边界情况。

建议 11-6:保留测试信息,以便分析、总结经验及进行更充分的测试。

建议 11-7:不应通过“试”来解决问题,应寻找问题的根本原因。

建议 11-8:对自动消失的错误进行分析,搞清楚错误是如何消失的。

建议 11-9:修改错误不仅要治表,更要治本。

建议 11-10:测试时应设法使很少发生的事件经常发生。

建议 11-11:明确模块或函数处理哪些事件,并使它们经常发生。

建议 11-12: 坚持在编码阶段就对代码进行彻底的单元测试,不要等以后的测试工作来发现问题。

建议 11-13:去除代码运行的随机性(如去掉无用的数据、代码及尽可能防止并注意函数中的“内部寄存器”等),让函数运行的结果可预测,并使出现的错误可再现。


12 宏

规则 12-1:用宏定义表达式时,要使用完备的括号。

示例:如下定义的宏都存在一定的风险。

#define RECTANGLE_AREA( a, b ) a * b

#define RECTANGLE_AREA( a, b ) (a * b)

#define RECTANGLE_AREA( a, b ) (a) * (b)

正确的定义应为:

#define RECTANGLE_AREA( a, b ) ((a) * (b))

规则 12-2:将宏所定义的多条表达式放在大括号中。

示例:下面的语句只有宏的第一条表达式被执行。为了说明问题,for语句的书写稍不符规范。

#define INTI_RECT_VALUE( a, b )\

    a = 0;\

    b = 0;

for (index = 0; index < RECT_TOTAL_NUM; index++)

    INTI_RECT_VALUE( rect.a, rect.b );

正确的用法应为:

#define INTI_RECT_VALUE( a, b )\

{\

    a = 0;\

    b = 0;\

}

for (index = 0; index < RECT_TOTAL_NUM; index++)

{

   INTI_RECT_VALUE( rect[index].a, rect[index].b );

}

规则 12-3:使用宏时,不允许参数发生变化。

示例:如下用法可能导致错误。

#define SQUARE( a ) ((a) * (a))

int a = 5;

int b;

b = SQUARE( a++ ); // 结果:a = 7,即执行了两次增1。

正确的用法是:

b = SQUARE( a );

a++; // 结果:a = 6,即只执行了一次增1。_

猜你喜欢

转载自blog.csdn.net/zhaozhiyuan111/article/details/89202636