Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension

前俩次,都用到了\(rounding()\),遗憾的是,都没有讲清楚,这次稍微具体地讲下这篇论文。但是说实话,我感觉,我还是没有领会到这篇文章的精髓。

Setup of Batch PCA and Online PCA

Batch PCA的目标,就是寻找一个子空间,能够最小化平方误差。
这篇论文,给出了一个比较新颖的表达方式:
在这里插入图片描述
where,
\(m\in \mathbb{R}^{n}\)
\(rank(P) =k\)
一般来讲,最优解就是,\(m = \overline{x}\), 而\(P\)所对应的子空间就是协方差矩阵的前\(k\)个特征向量组成的子空间。
论文对(1)进行了一个改写:
在这里插入图片描述
在这里插入图片描述
上面式子的一种直观解释就是,\(comp(P)\)就是一种损失,这个损失是由投影矩阵\(P\)带来的。
而在streaming PCA(论文里为Online PCA):
在这里插入图片描述
很自然的,
在这里插入图片描述
成了\(T\)次迭代所积累的损失。
我们希望,这些损失,能够接近由Batch PCA所产生的损失。

Hedge Algorithm

假设,有\(n\)个专家:expert \(i\), \(i=1,2,\ldots,n\).
有一个概率向量\(\mathsf{w}\),每个元素\(\mathsf{w}_i\)为舍弃expert \(i\)的概率。
自然而然,会有一个损失,称之为:\(\mathcal{l}\),每个元素是舍弃相应expert的损失,但是要求\(\mathcal{l}\in[0,1]\),所以我估计得有个单位化的过程。
下面就是如何选取专家,和迭代更新\(\mathsf{w}\)的算法。
在这里插入图片描述

这个\(\mathbf{w}\)的更新,有点类似adaboost,感觉其它地方也有看到过,至于其中的原理,估计还是得看论文吧。
同时,有下面的性质:
在这里插入图片描述
在这里插入图片描述

改进算法

这个算法的目标是,将\(\mathbf{w}\)分解为\(\mathop{\sum}\limits_{i}p_ir_i\),其中\(p_i\)为概率,\(r_i\)\((n-k)\)-corner.\(d\)-corner,是指有且仅有\(d\)个非零项,且非零项的值为:\(\frac{1}{d}\).分解完毕只有,不同于上面的算法,这个算法将通过分布\(p_i\)选择\(r_i\),而\(r_i\)中的非零项所对应的指标就是相应的要舍弃的专家,expert。
分解算法如下:
在这里插入图片描述
\(\mathbf{w} \in B_d^n\)是指\(|\mathbf{w}|=\mathop{\sum}\limits_{i}\mathbf{w}_i=1\),且\(0 \leq \mathbf{w}_i \leq \frac{1}{d}\)

为了使\(\mathbf{w} \in B_d^{n}\),有下面的算法:
在这里插入图片描述

接下来就是结合上面的分解所得到的改进的Hedge算法:
在这里插入图片描述

有一个性质:
在这里插入图片描述

用于矩阵

在这里插入图片描述

定义:
在这里插入图片描述

矩阵\(d\)-corner是指\(A\)的特征值,有且仅有\(d\)个非零项,且均为\(\frac{1}{d}\)
其他的类似定义。
这里的\(W\)是密度矩阵:对称正定矩阵,且迹为1。
则:
在这里插入图片描述
在这里插入图片描述
\(\mathbf{log}A=\mathop{\sum}\limits_ilog(\lambda_i)a_ia_i^{\top}\), 如果\(A=\mathop{\sum}\limits_i\lambda_ia_ia_i^{\top}\)
\(\mathbf{exp}A\)同理。

这个算法貌似是为了将\(W\)投影到\(B_d^{n}\)中的理论依据。

下面的算法五,就是关于如何利用\(W\)进行PCA:
在这里插入图片描述

\(rounding()\)

那么如何将上面的种种算法应用到之前提到的文章呢。之前的文章说,算法二就可以了,所以是这么理解吗?
最后得到的矩阵,根据特征值,得到概率向量\(\mathbf{w}\),然后再进行分解,通过概率\(p_i\),得到\(r_i\),接着,舍弃这些特征向量,得到最后的投影矩阵\(P\)?
但是,用特征值,总觉得和上面的不大相符,可不用特征值又能用什么呢?因为他们都是在最后一步利用这个\(rounding()\)。但是,用算法五,就和他们本身的算法不一致了,具体如何,不得而知了。

猜你喜欢

转载自www.cnblogs.com/MTandHJ/p/10527989.html
PCA