3.11 考试总结

String

题意

  • 给你一个01串S,q次询问,每次询问一个01串T,先对T复制到长度与S相同为止,再回答从当前的T至少操作多少次可以得到S,一次操作指取反一个区间的所有元素(\(\sum|T|,|S|\le2\times10^5\)).

题解

​ 这种01串加取反操作肯定会想到异或运算,我们定义一个串的异或序列A满足\(A_i=S_i\textrm{ xor }S_{i-1}\),如果我们再每个串的结尾再加上一个0,那么异或序列就和01串一一对应了,因为操作的是区间,所以每次就是取反异或序列的两个位置,那么我们就是寻找两个串上一共有多少对位置元素不同.

​ 我们先证明串的长度种类是不超过\(\sqrt{2\times 10^5}\)的,这个应该挺显然,分小于根号大于根号的串讨论一下就好了.那么我们把询问串按长度分类统计就可以做到\(O(|S|\sqrt{\sum|T|})\)的复杂度了.

代码

#include <bits/stdc++.h>

#define x first
#define y second
#define mp make_pair
#define pb push_back
#define For(i, a, b) for (int i = a; i <= b; ++ i)
#define Forr(i, a, b) for (int i = a; i >= b; -- i)

using namespace std;

const int MAXN = 2e5;

vector<pair<vector<int>, int>> Q[MAXN + 5];

int S[MAXN + 5], ans[MAXN + 5], vis[2][MAXN + 5], n, m, q;

int main()
{
    static char s[MAXN + 5];
    scanf("%s%d", s + 1, &q), n = strlen(s + 1);
    For(i, 1, n) S[i] = s[i] == 'a';
    Forr(i, n + 1, 1) S[i] ^= S[i - 1];
    For(i, 1, q)
    {
        scanf("%s", s + 1);
        m = min((int)strlen(s + 1), n);
        vector<int> vec = {0};
        For(j, 1, m) vec.pb(s[j] == 'a');
        vec[0] = vec[m];
        Q[m].pb(mp(vec, i));
    }
    For(len, 1, n) if (!Q[len].empty())
    {
        int ed = (n - 1) % len + 1;
        For(i, 2, n) ++ vis[S[i]][(i - 1) % len + 1];
        for (auto v : Q[len])
        {
            ans[v.y] = (S[1] ^ v.x[1]) + (S[n + 1] ^ v.x[ed]);
            For(i, 1, len) ans[v.y] += vis[v.x[i] ^ v.x[i - 1] ^ 1][i];
        }
        For(i, 1, len) vis[0][i] = vis[1][i] = 0;
    }
    For(i, 1, q) printf("%d\n", ans[i] >> 1);
    return 0;
}

Sea

题意

  • 给你一个DAG,每个点有点权,你需要保证任何时候你经过的点的点权和不超过\(H\),在此基础上每次随机选择一条边走,如果无路可走就会清空经过的点权并回到\(1\)号点,求\(1\)号点到\(n\)号点的期望步数.(\(n,H\le100\)

题解

​ 如果没有回到一号点的边直接期望DP就好了,有的话我们发现每个点只是多了一条出边,倘若我们知道\(1\)号点到\(n\)号点的期望步数还是可以期望DP,那么我们二分答案后用算出来的期望步数调整二分的答案就好了.

代码

#include <bits/stdc++.h>

#define For(i, a, b) for (int i = a; i <= b; ++ i)
#define Forr(i, a, b) for (int i = a; i >= b; -- i)

using namespace std;

const int N = 100;
const long double eps = 1e-9;

vector<int> G[N + 5];

int a[N + 5], mx[N + 5];
int n, H;

bool check(long double e)
{
    static long double dp[N + 5][N + 5];
    For(i, 1, n) For(j, 1, H) dp[i][j] = 1e9;
    For(i, 1, H) dp[n][i] = 0;
    Forr(u, n - 1, 1) For(j, mx[u] + 1, H) if (!G[u].empty())
    {
        long double res = 0;
        for (auto v : G[u]) res += min(dp[v][j - a[v]], H - (j - a[v]) + e);
        dp[u][j] = res / ((int)G[u].size()) + 1;
    }
    return dp[1][H] < e;
}

int main()
{
    int x, y, m;
    scanf("%d%d%d", &n, &m, &H);
    For(i, 1, m)
    {
        scanf("%d%d", &x, &y);
        G[x].push_back(y);
    }
    For(i, 1, n) scanf("%d", &a[i]);
    For(u, 1, n) for (auto v : G[u])
        mx[u] = max(mx[u], a[v]);
    long double l = 0, r = 2e6;
    while (l + eps < r)
    {
        long double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    if (l >= 1e6) puts("-1");
    else printf("%.6Lf", l);
    return 0;
}

Sword

题意

  • \(\sum\limits_{i = 1}^nR^ii^k\)\(10^9+7\)取模的结果\(,(k\le5000,R,n\le10^{16},R\text{ mod }10^9+7\neq1)\)

题解

​ 设那个式子为\(f(k)\),我们裂项相消一下可以得到:

\[ f(k)=\frac{R^{n+1}n^k-\sum_{i = 1}^nR^i(i^k-(i-1)^k)}{R-1} \]

​ 把\(\rm k=1,2,3\)代入进去找下规律就可以发现:

\[ f(k)=\frac{R^{n+1}n^k-\sum_{j = k}^n(-1)^jf(k-j)\binom k j}{R-1} \]

​ 记忆化搜索即可,复杂度\(O(k^2)\) .(证明以后有时间再补)

代码

#include <bits/stdc++.h>

#define x first
#define y second
#define pb push_back
#define mp make_pair
#define inf (0x3f3f3f3f)
#define SZ(x) ((int)x.size())
#define ALL(x) x.begin(), x.end()
#define Set(a, b) memset(a, b, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define DEBUG(...) fprllf(stderr, __VA_ARGS__)
#define debug(x) cout << #x << " = " << x << endl
#define Rep(i, a) for (int i = 0, i##end = (a); i < i##end; ++ i)
#define For(i, a, b) for (int i = (a), i##end = (b); i <= i##end; ++ i)
#define Forr(i, a, b) for (int i = (a), i##end = (b); i >= i##end; -- i)
#define Travel(i, u) for (int i = head[u], v = to[i]; i; v = to[i = nxt[i]])

namespace IO { 

    const int N = 1e6;

    static char s[N], *S = s, *T = s, t[N], *E = t;

    inline void flush() { fwrite(t, 1, E - t, stdout), E = t; }

    inline char getc() {
        if (S == T) T = (S = s) + fread(s, 1, N, stdin);
        return S == T ? 0 : *S ++;
    }

    inline void putc(char c) {
        if (E == t + N - 1) flush();
        *E ++ = c;
    }
}

using IO::getc;
using IO::putc;
using IO::flush;
using namespace std;
using ll = long long;
using PII = pair <int, int>;

template <class T>
inline T read() {
    T ___ = 1, __ = getc(), _ = 0;
    for (; !isdigit(__); __ = getc())
        if (__ == '-') ___ = -1;
    for (; isdigit(__); __ = getc())
        _ = _ * 10 + __ - 48;
    return _ * ___;
}

template <class T>
inline void write(T _, char __ = '\n') {
    if (!_) putc(48);
    if (_ < 0) putc('-'), _ = -_;
    static int sta[111], tp;
    for (sta[tp = 0] = __; _; _ /= 10)
        sta[++ tp] = _ % 10 + 48;
    while (~tp) putc(sta[tp --]);
}

template <class T>
inline bool chkmax(T &_, T __) {
    return _ < __ ? _ = __, 1 : 0;
}

template <class T>
inline bool chkmin(T &_, T __) {
    return _ > __ ? _ = __, 1 : 0;
}

inline void proStatus() {
    ifstream t("/proc/self/status");
    cerr << string(istreambuf_iterator <char> (t), istreambuf_iterator <char> ());
}

const int mod = 1e9 + 7;
const int N = 5000;

ll fac[N + 5], ifac[N + 5];

ll n, R, K;

inline ll qpow(ll a, ll x) { 
    ll ret = 1; 
    a %= mod, x %= (mod - 1);
    while (x) {
        if (x & 1) (ret *= a) %= mod;
        x >>= 1, (a *= a) %= mod;
    }
    return ret;
}

inline ll C(ll x, ll y) { 
    return fac[x] * ifac[y] % mod * ifac[x - y] % mod;
}

ll f[N + 5], val, mom, poww[N + 5];

ll query(ll k) { 
    if (f[k]) return f[k];
    if (!k) return f[k] = (val - R % mod + mod) * mom % mod;
    ll res = val * poww[k] % mod;
    For(j, 1, k) (res += (j & 1 ? -1 : 1) * (query(k - j) * C(k, j) % mod)) %= mod;
    return f[k] = (res + mod) * mom % mod;
}

signed main() {

    fac[0] = 1; 
    For(i, 1, N) fac[i] = fac[i - 1] * i % mod;
    ifac[N] = qpow(fac[N], mod - 2);
    Forr(i, N, 1) ifac[i - 1] = ifac[i] * i % mod;

    for (ll T = read<ll>(); T -- ; ) {
        K = read<ll>(), n = read<ll>(), R = read<ll>();
        val = qpow(R, n + 1), mom = qpow(R - 1, mod - 2);
        poww[0] = 1; 
        For(i, 1, K) poww[i] = poww[i - 1] * (n % mod) % mod;
        Set(f, 0), printf("%lld\n", query(K));
    }

    return flush(), 0;
}

总结 

​ 今天考的不算好但是总算有进步了,需要努力的地方还是对题目性质的挖掘,然后应该善于发现规律???

猜你喜欢

转载自www.cnblogs.com/brunch/p/10512909.html