pytorch 之 构建网络模型的几种方法

利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。

假设构建一个网络模型如下:

卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层

首先导入几种方法用到的包:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from collections import OrderedDict
import matplotlib.pyplot as plt
import numpy as np

第一种方法

print("Method 1 -----------------------------------------")
class Net1(torch.nn.Module):
    def __init__(self):
        super(Net1, self).__init__()
        self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
        self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
        self.dense2 = torch.nn.Linear(128, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), 2)
        x = x.view(x.size(0), -1)
        x = F.relu(self.dense1(x))
        x = self.dense2(x)
        return x


model1 = Net1()
print(model1)

这种方法比较常用,早期的教程通常就是使用这种方法。

第二种方法

print("Method 2 -----------------------------------------")
class Net2(torch.nn.Module):
    def __init__(self):
        super(Net2, self).__init__()
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(3, 32, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2))
        self.dense = torch.nn.Sequential(
            torch.nn.Linear(32 * 3 * 3, 128),
            torch.nn.ReLU(),
            torch.nn.Linear(128, 10)
        )

    def forward(self, x):
        conv_out = self.conv1(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out


model2 = Net2()
print(model2)

这种方法利用torch.nn.Sequential()容器进行快速搭建,模型的各层被顺序添加到容器中。缺点是每层的编号是默认的阿拉伯数字,不易区分

第三种方法:

print("Method 3 -----------------------------------------")
class Net3(torch.nn.Module):
    def __init__(self):
        super(Net3, self).__init__()

        self.conv=torch.nn.Sequential()
        self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
        self.conv.add_module("relu1",torch.nn.ReLU())
        self.conv.add_module("pool1",torch.nn.MaxPool2d(2))

        self.dense = torch.nn.Sequential()
        self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
        self.dense.add_module("relu2",torch.nn.ReLU())
        self.dense.add_module("dense2",torch.nn.Linear(128, 10))

    def forward(self, x):
        conv_out = self.conv1(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out


model3 = Net3()
print(model3)

这种方法是对第二种方法的改进:通过add_module()添加每一层,并且为每一层增加了一个单独的名字

第四种方法:

print("Method 4 -----------------------------------------")
class Net4(torch.nn.Module):
    def __init__(self):
        super(Net4, self).__init__()
        self.conv = torch.nn.Sequential(
            OrderedDict(
                [
                    ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
                    ("relu1", torch.nn.ReLU()),
                    ("pool", torch.nn.MaxPool2d(2))
                ]
            ))

        self.dense = torch.nn.Sequential(
            OrderedDict([
                ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
                ("relu2", torch.nn.ReLU()),
                ("dense2", torch.nn.Linear(128, 10))
            ])
        )

    def forward(self, x):
        conv_out = self.conv1(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out


model4 = Net4()
print(model4)

是第三种方法的另外一种写法,通过字典的形式添加每一层,并且设置单独的层名称

完整代码:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from collections import OrderedDict
import matplotlib.pyplot as plt
import numpy as np

print("Method 1 -----------------------------------------")
class Net1(torch.nn.Module):
    def __init__(self):
        super(Net1, self).__init__()
        self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
        self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
        self.dense2 = torch.nn.Linear(128, 10)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv(x)), 2)
        x = x.view(x.size(0), -1)
        x = F.relu(self.dense1(x))
        x = self.dense2(x)
        return x


model1 = Net1()
print(model1)

print("Method 2 -----------------------------------------")
class Net2(torch.nn.Module):
    def __init__(self):
        super(Net2, self).__init__()
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(3, 32, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2))
        self.dense = torch.nn.Sequential(
            torch.nn.Linear(32 * 3 * 3, 128),
            torch.nn.ReLU(),
            torch.nn.Linear(128, 10)
        )

    def forward(self, x):
        conv_out = self.conv1(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out


model2 = Net2()
print(model2)

print("Method 3 -----------------------------------------")
class Net3(torch.nn.Module):
    def __init__(self):
        super(Net3, self).__init__()

        self.conv=torch.nn.Sequential()
        self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
        self.conv.add_module("relu1",torch.nn.ReLU())
        self.conv.add_module("pool1",torch.nn.MaxPool2d(2))

        self.dense = torch.nn.Sequential()
        self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
        self.dense.add_module("relu2",torch.nn.ReLU())
        self.dense.add_module("dense2",torch.nn.Linear(128, 10))

    def forward(self, x):
        conv_out = self.conv1(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out


model3 = Net3()
print(model3)

print("Method 4 -----------------------------------------")
class Net4(torch.nn.Module):
    def __init__(self):
        super(Net4, self).__init__()
        self.conv = torch.nn.Sequential(
            OrderedDict(
                [
                    ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
                    ("relu1", torch.nn.ReLU()),
                    ("pool", torch.nn.MaxPool2d(2))
                ]
            ))

        self.dense = torch.nn.Sequential(
            OrderedDict([
                ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
                ("relu2", torch.nn.ReLU()),
                ("dense2", torch.nn.Linear(128, 10))
            ])
        )

    def forward(self, x):
        conv_out = self.conv1(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out


model4 = Net4()
print(model4)

最后输出

Method 1 -----------------------------------------
Net1(
  (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (dense1): Linear(in_features=288, out_features=128, bias=True)
  (dense2): Linear(in_features=128, out_features=10, bias=True)
)
Method 2 -----------------------------------------
Net2(
  (conv): Sequential(
    (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dense): Sequential(
    (0): Linear(in_features=288, out_features=128, bias=True)
    (1): ReLU()
    (2): Linear(in_features=128, out_features=10, bias=True)
  )
)
Method 3 -----------------------------------------
Net3(
  (conv): Sequential(
    (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu1): ReLU()
    (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dense): Sequential(
    (dense1): Linear(in_features=288, out_features=128, bias=True)
    (relu2): ReLU()
    (dense2): Linear(in_features=128, out_features=10, bias=True)
  )
)
Method 4 -----------------------------------------
Net4(
  (conv): Sequential(
    (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (relu1): ReLU()
    (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dense): Sequential(
    (dense1): Linear(in_features=288, out_features=128, bias=True)
    (relu2): ReLU()
    (dense2): Linear(in_features=128, out_features=10, bias=True)
  )
)

猜你喜欢

转载自blog.csdn.net/xxboy61/article/details/88105850
今日推荐