python:图片读取

opencv.imread

图片读取操作

import cv2
import numpy as np
 
#读入图片:默认彩色图,cv2.IMREAD_GRAYSCALE灰度图,cv2.IMREAD_UNCHANGED包含alpha通道
img = cv2.imread('1.jpg')
cv2.imshow('src',img)
print(img.shape) # (h,w,c)
print(img.size) # 像素总数目
print(img.dtype)
print(img)
cv2.waitKey()

opencv读进来的图片已经是一个numpy矩阵了,彩色图片维度是(高度,宽度,通道数)。数据类型是uint8。

#gray = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) #灰度图
#cv2.imshow('gray',gray)
#也可以这么写,先读入彩色图,再转灰度图
src = cv2.imread('1.jpg')
gray = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
cv2.imshow('gray',gray)
print(gray.shape)
print(gray.size)
print(gray)
cv2.waitKey()

 

# 图片需要考虑是否存在 路径是否正确两个问题 轮径问题需要用到os模块os.path.isfile
#如何解决“读到的图片不存在的问题”? #加入判断语句,如果为空,做异常处理
img2 = cv2.imread('2.jpg')
if img2 == None:
  print('fail to load image!')

图片矩阵变换

opencv读入图片的矩阵格式是:(height,width,channels)。而在深度学习中,因为要对不同通道应用卷积,所以会采取另一种方式:(channels,height,width)。为了应对该要求,我们可以这么做。

#注意到,opencv读入的图片的彩色图是一个channel last的三维矩阵(h,w,c),即(高度,宽度,通道)
#有时候在深度学习中用到的的图片矩阵形式可能是channel first,那我们可以这样转一下
print(img.shape)
img = img.transpose(2,0,1)
print(img.shape)

在深度学习搭建CNN时,往往要做相应的图像数据处理,比如图像要扩展维度,比如扩展成(batch_size,channels,height,width),有的框架比如tf,keras他们需要的格式不一样的。

对于这种要求,我们可以这么做。

#有时候还要扩展维度,比如有时候我们需要预测单张图片,要在要加一列做图片的个数,可以这么做
img = np.expand_dims(img, axis=0)
print(img.shape)

上面提到的是预测阶段时预测单张图片的扩展维度的操作,如果是训练阶段,构建batch,即得到这种形式:(batch_size,channels,height,width)。我一般喜欢这么做

data_list = [] 
loop:
    im = cv2.imread('xxx.png')
    data_list.append(im)
data_arr = np.array(data_list)

这样子就能构造成我们想要的形式了。

图片归一化

归一化到0~1之间

#因为opencv读入的图片矩阵数值是0到255,有时我们需要对其进行归一化为0~1
img3 = cv2.imread('1.jpg')
img3 = img3.astype("float") / 255.0 #注意需要先转化数据类型为float
print(img3.dtype)
print(img3)

存储图片

#存储图片
cv2.imwrite('test1.jpg',img3) #得到的是全黑的图片,因为我们把它归一化了
#所以要得到可视化的图,需要先*255还原
img3 = img3 * 255
cv2.imwrite('test2.jpg',img3) #这样就可以看到彩色原图了

opencv读出来图片是BGR,matplotlab读出来是RGB的,可以通过cvColor来转换。

访问像素

#访问像素
print(img4[10,10]) #3channels
print(gray[10,10]) #1channel
img4[10,10] = [255,255,255]
gray[10,10] = 255
print(img4[10,10]) #3channels
print(gray[10,10]) #1channel

ROI操作

#roi操作
roi = img4[200:550,100:450,:]
cv2.imshow('roi',roi)
cv2.waitKey()

通道操作

#分离通道
img5 = cv2.imread('1.jpg')
b,g,r = cv2.split(img5)
#合并通道
img5 = cv2.merge((b,g,r))
#也可以不拆分
img5[:,:,2] = 0 #将红色通道值全部设0

PIL.Image.open

图片读取

from PIL import Image
import numpy as np
img = Image.open('1.jpg')
print(img.format) 
print(img.size) #注意,省略了通道 (w,h)
print(img.mode) #L为灰度图,RGB为真彩色,RGBA为加了透明通道
img.show() # 显示图片

PIL读进来的图像是一个对象,而不是我们所熟知的numpy 矩阵。

灰度图的获取

gray = Image.open('1.jpg').convert('L')
gray.show()


#读取不到图片会抛出异常IOError,我们可以捕捉它,做异常处理
try:
    img2 = Image.open('2.jpg')
except IOError:
    print('fail to load image!')


#pillow读进来的图片不是矩阵,我们将图片转矩阵,channel last
arr = np.array(img3)
print(arr.shape)
print(arr.dtype)
print(arr)

灰度图的转化与彩图转化一样

存储图片


#矩阵再转为图像
new_im = Image.fromarray(arr)
new_im.save('3.png')

图像操作


#分离合并通道
r, g, b = img.split()
img = Image.merge("RGB", (b, g, r))
img = img.copy() #复制图像

ROI获取

img3 = Image.open('1.jpg')
roi = img3.crop((0,0,300,300)) #(左上x,左上y,右下x,右下y)坐标
roi.show()

matplotlib.image

matplotlib是一个科学绘图的包。

读图片

import matplotlib.pyplot as plt
import numpy as np
image = plt.imread('1.jpg')
plt.imshow(image)
plt.show()
#也可以关闭显示x,y轴上的数字
image = plt.imread('1.jpg')
plt.imshow(image)
plt.axis('off')
plt.show()
#plt.imread读入的就是一个矩阵,跟opencv一样,但彩图读进的是RGB,与opencv有区别
print(image.shape) # (h,w,c)
print(image.size)
print(image.dtype) 
print(image)

im_r = image[:,:,0] #红色通道
plt.imshow(im_r)
plt.show()
#此时会发现显示的是热量图,不是我们预想的灰度图,可以添加 cmap 参数解决
plt.imshow(im_r,cmap='Greys_r')
plt.show()

#再试一试pillow和matplotlib结合
from PIL import Image
im3 = Image.open('1.jpg')
im3 = np.array(im3)
plt.figure(1)
plt.imshow(im3)
plt.axis('off')
#存储图像,注意,必须在show之前savefig,否则存储的图片一片空白
plt.savefig('timo.jpg')
plt.show()

#最后以一个综合例子总结matplotlib最基本的图片显示技巧吧
im_lol1 = plt.imread('lol.jpg')
im_lol2 = plt.imread('1.jpg')
figure = plt.figure(figsize=(20,10)) # 调整显示图片的大小
'''
figsize参数:指定绘图对象的宽度和高度,单位为英寸;dpi参数指定绘图对象的分辨率,
即每英寸多少个像素,缺省值为80。因此本例中所创建的图表窗口的宽度为8*80 = 640像素
'''
plt.axis("off")#不显示刻度 
ax = figure.add_subplot(121) # 图片以1行2列的形式显示
plt.axis('off')
ax.imshow(im_lol1) #第一张图
ax.set_title('lol image 1')#给图片加titile 
ax = figure.add_subplot(122) 
plt.axis('off')
ax.imshow(im_lol2) 
ax.set_title('lol image 2')#给图片加titile 
 
plt.savefig('twp.jpg')
plt.show()

scipy.misc.imread

 这个函数将会在1.20以后被移除,而被imageio.imread代替。这话我理解为原来读出来是numpy,移除后用PIL的函数读取。为什么这么说呢?

1.10以前版本读出来的彩图是三通道,1.20现在用它读出来的是4通道。

并且它读出来的图,不是numpy数组形式。他调用的是PIL的函数。下面是管饭的文档。

 

读图

from scipy import misc
import matplotlib.pyplot as plt

im = misc.imread('1.jpg')  # 读图
print(im.dtype)
print(im.size)
print(im.shape)
misc.imsave('misc1.png',im)  # 保存
plt.imshow(im)  # 显示图需要借助别人
plt.show()
print(im)

可以看到,有warining,提示我们imread和imsave在后来的版本将会被弃用,叫我们使用imageio.imread和imageio.imwrite。

我们根据她的提示,使用imageio模块进行图片读写,warning也就没有了。

import imageio
im2 = imageio.imread('1.jpg')
print(im2.dtype)
print(im2.size)
print(im2.shape)
plt.imshow(im)
plt.show()
print(im2)
imageio.imsave('imageio.png',im2)

skimage:skimage.io.imread

没用过这个模块,返回的是numpy数组

读图

from skimage import io
 
im = io.imread('1.jpg') # 读图
print(im.shape) # numpy矩阵,(h,w,c)
print(im.dtype)
print(im.size)
io.imshow(im)  # 显示图
io.imsave('sk.png',im)  # 保存图
print(im)

 

彩图--灰度图

im2 = io.imread('1.jpg',as_grey=True) #读入灰度图
print(im2.dtype)
print(im2.size)
print(im2.shape)
io.imshow(im2)
io.imsave('sk_gray.png',im2)
io.show()
print(im2)

可以看到,灰度图像的矩阵的值被归一化了,注意注意!

也可以以这种方式获得灰度图:

from skimage import color
im3 = io.imread('1.jpg')
im3 = color.rgb2grey(im3)
print(im3.dtype)
print(im3.size)
print(im3.shape)
io.imshow(im3)
io.show()
 
'''
skimage.color.rgb2grey(rgb)
skimage.color.rgb2hsv(rgb)
skimage.color.rgb2lab(rgb)
skimage.color.gray2rgb(image)
skimage.color.hsv2rgb(hsv)
skimage.color.lab2rgb(lab)
 
'''

因为他是也numpy的,所以切图操作的,可以当作numpy数组来处理。

总结

  1. 除了opencv读入的彩色图片以BGR顺序存储外,其他所有图像库读入彩色图片都以RGB存储。
  2. 除了PIL读入的图片是img类之外,其他库读进来的图片都是以numpy 矩阵。
  3. 各大图像库的性能,老大哥当属opencv,无论是速度还是图片操作的全面性,都属于碾压的存在,毕竟他是一个巨大的cv专用库。下面那张图就是我从知乎盗来的一张关于各个主流图像库的一些性能比较图,从测试结果看来,opencv确实胜出太多了。

猜你喜欢

转载自blog.csdn.net/weixin_39875161/article/details/88042175
今日推荐