《算法与数据结构》学习笔记9---排序

前言

    本内容为自己的学习笔记,来源于极客时间课程。
    排序,排序,万恶的排序啊。

正文

如何分析一个“排序算法”?
  • 排序算法的执行效率
  1. 最好情况、最坏情况、平均情况时间复杂度
        我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。
        为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。
  2. 时间复杂度的系数、常数、低阶
        时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。
  3. 比较次数和交换(或移动)次数
        基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。
  • 排序算法的内存消耗
        算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,还有一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。

  • 排序算法的稳定性
        仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序是不变的。
        针对稳定性的解释:比如我们有一组数据 2,9,3,4,8,3,按照大小排序之后就是 2,3,3,4,8,9。这组数据里有两个 3。经过某种排序算法排序之后,如果两个 3 的前后顺序没有改变,那我们就把这种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序算法。
        为什么要考察排序算法的稳定性?
        在真正软件开发中,要排序的往往不是单纯的整数,而是一组对象,我们需要按照对象的某个 key 来排序。比如说,现在要给电商交易系统中的“订单”排序。订单有两个属性,一个是下单时间,另一个是订单金额。如果现在有 10 万条订单数据,我们希望按照金额从小到大对订单数据排序。对于金额相同的订单,我们希望按照下单时间从早到晚有序。
        对于这样一个排序需求,最先想到的方法是:我们先按照金额对订单数据进行排序,然后,再遍历排序之后的订单数据,对于每个金额相同的小区间再按照下单时间排序。这种排序思路理解起来不难,但是实现起来会很复杂。
    借助稳定排序算法,解决思路为:首先按照***下单时间***给订单排序,排序完成之后,我们用***稳定排序算法***,按照***订单金额***重新排序。两遍排序之后,我们得到的订单数据就是按照金额从小到大排序,金额相同的订单按照下单时间从早到晚排序的。
        Why?
        稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。第一次排序之后,所有的订单按照下单时间从早到晚有序了。在第二次排序中,我们用的是稳定的排序算法,所以经过第二次排序之后,相同金额的订单仍然保持下单时间从早到晚有序。

冒泡排序(Bubble Sort)

    冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。
用一张网友的图片:
在这里插入图片描述
    实际上,刚讲的冒泡过程还可以优化。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。
代码实现:

// 冒泡排序,a 表示数组,n 表示数组大小
public void bubbleSort(int[] a, int n) {
  if (n <= 1) return;
 
 for (int i = 0; i < n; ++i) {
    // 提前退出冒泡循环的标志位
    boolean flag = false;
    for (int j = 0; j < n - i - 1; ++j) {
      if (a[j] > a[j+1]) { // 交换
        int tmp = a[j];
        a[j] = a[j+1];
        a[j+1] = tmp;
        flag = true;  // 表示有数据交换      
      }
    }
    if (!flag) break;  // 没有数据交换,提前退出
  }
}

一问,冒泡排序是原地排序吗
    冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。
二问,冒泡排序是稳定的排序算法吗
    在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。
三问,冒泡排序的时间复杂度是多少
    最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n2)。
    对于平均时间复杂度,前面我们介绍过概率论的方法,但是一个包含n个数据的数组,一共有n!种排列方式,排列方式不同,时间也就不同,并且使用这种方法数学打理和计算都很复杂。这里介绍“有序度”“逆序度”来进行分析。
    有序度是数组中具有有序关系的元素对的个数。数学表达式为:

                 a[i] <= a[j], 假设 i < j。

在这里插入图片描述
    同理,对于一个倒序排列的数组,比如 6,5,4,3,2,1,有序度是 0;对于一个完全有序的数组,比如 1,2,3,4,5,6,有序度就是n*(n-1)/2,也就是 15。我们把这种完全有序的数组的有序度叫作满有序度
    逆序度的概念与有序度正好相反。逆序度=满有序度-有序度。排序的过程就是一种增加有序度,减少逆序度的过程,最后达到满有序度,就说明排序完成
    冒泡排序包含两个操作原子,比较和交换。每交换一次,有序度就加 1。不管算法怎么改进,交换次数总是确定的,即为逆序度,也就是n*(n-1)/2–初始有序度。
    对于包含 n 个数据的数组进行冒泡排序,平均交换次数是多少呢?最坏情况下,初始状态的有序度是 0,所以要进行 n*(n-1)/2 次交换。最好情况下,初始状态的有序度是 n*(n-1)/2,就不需要进行交换。我们可以取个中间值 n*(n-1)/4,来表示初始有序度既不是很高也不是很低的平均情况。换句话说,平均情况下,需要 n*(n-1)/4 次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是 O(n2),所以平均情况下的时间复杂度就是 O(n2)。
ps: 这种求平均时间复杂度的过程并不太严格,但有时很实用。

插入排序(Insertion Sort)

原理:1、将指针指向某个元素,假设该元素左侧的元素全部有序,将该元素抽取出来,然后按照从右往左的顺序分别与其左边的元素比较,遇到比其大的元素便将元素右移,直到找到比该元素小的元素或者找到最左面发现其左侧的元素都比它大,停止;
2、此时会出现一个空位,将该元素放入到空位中,此时该元素左侧的元素都比它小,右侧的元素都比它大;
3、指针向后移动一位,重复上述过程。每操作一轮,左侧有序元素都增加一个,右侧无序元素都减少一个。
    首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。
    插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。
    对于不同的查找插入点方法(从头到尾、从尾到头),元素的比较次数是有区别的。但对于一个给定的初始序列,移动操作的次数总是固定的,就等于逆序度。

// 插入排序,a 表示数组,n 表示数组大小
public void insertionSort(int[] a, int n) {
  if (n <= 1) return;

  for (int i = 1; i < n; ++i) {
    int value = a[i];
    int j = i - 1;
    // 查找插入的位置
    for (; j >= 0; --j) {
      if (a[j] > value) {
        a[j+1] = a[j];  // 数据移动
      } else {
        break;
      }
    }
    a[j+1] = value; // 插入数据
  }
}

一问,插入排序是原地排序吗?
    从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。
二问,插入排序是稳定排序吗?
    在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。
三问,插入排序的时间复杂度是多少?
    如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据。
如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n2)。
    还记得在数组中插入一个数据的平均时间复杂度是多少吗?没错,是 O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n2)。

选择排序(Selection Sort)

    选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

/**
 * 选择排序
 * @param a 待排序数组
 * @param n 数组长度
 */
public static void selectSort(int[] a, int n) {
    if(n<=0) return;
        for(int i=0;i<n;i++){
             int min=i;
             for(int j=i;j<n;j++){
                  if(a[j] < a[min]) min=j;
             }
             if(min != i){
                  int temp=a[i];
                  a[i]=a[min];
                  a[min]=temp;
             }
        }
}

一问,选择排序是原地排序吗?
    选择排序的空间复杂度为O(1),是一种原地排序算法。
二问,选择排序是稳定排序吗?
     选择排序是一种不稳定的排序算法。选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。
    比如 5,8,5,2,9 这样一组数据,使用选择排序算法来排序的话,第一次找到最小元素 2,与第一个 5 交换位置,那第一个 5 和中间的 5 顺序就变了,所以就不稳定了。正是因此,相对于冒泡排序和插入排序,选择排序就稍微逊色了。
三问,选择排序的时间复杂度是多少?
    选择排序的最好情况、最差情况、平均情况时间复杂度都为O(n2)

冒泡排序和插入排序的时间复杂度都是 O(n2),都是原地排序算法,为什么插入排序要比冒泡排序更受欢迎呢?
    冒泡排序不管怎么优化,元素交换的次数是一个固定值,是原始数据的逆序度。插入排序是同样的,不管怎么优化,元素移动的次数也等于原始数据的逆序度。
    但是,从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要 3 个赋值操作,而插入排序只需要 1 个。

冒泡排序中数据的交换操作:
if (a[j] > a[j+1]) { // 交换
   int tmp = a[j];
   a[j] = a[j+1];
   a[j+1] = tmp;
   flag = true;
}

插入排序中数据的移动操作:
if (a[j] > value) {
  a[j+1] = a[j];  // 数据移动
} else {
  break;
}

    把执行一个赋值语句的时间粗略地计为单位时间,然后分别用冒泡排序和插入排序对同一个逆序度是 K 的数组进行排序。用冒泡排序,需要 K 次交换操作,每次需要 3 个赋值语句,所以交换操作总耗时就是 3K 单位时间。而插入排序中数据移动操作只需要 K 个单位时间。

    这三种排序算法对于小规模数据的排序,用起来非常高效。但是大规模数据排序时,时间复杂度还是有些高。

前面的三种排序都是基于数组实现的。如果数据存储在链表中,这三种排序算法还能工作吗?如果能,那相应的时间、空间复杂度又是多少呢?
    觉得应该有个前提,是否允许修改链表的节点value值,还是只能改变节点的位置。一般而言,考虑只能改变节点位置,冒泡排序相比于数组实现,比较次数一致,但交换时操作更复杂;插入排序,比较次数一致,不需要再有后移操作,找到位置后可以直接插入,但排序完毕后可能需要倒置链表;选择排序比较次数一致,交换操作同样比较麻烦。综上,时间复杂度和空间复杂度并无明显变化,若追求极致性能,冒泡排序的时间复杂度系数会变大,插入排序系数会减小,选择排序无明显变化。

猜你喜欢

转载自blog.csdn.net/xue605826153/article/details/87340325