并不对劲的bzoj4816:loj2000:p3704[SDOI2017]数字表格

题目大意

有函数\(f(x)\)\(f(0)=0,f(1)=1,f(x)=f(x-1)+f(x-2)\)
\(t\)(\(t\leq1000\))组询问,每次给定\(n,m\)(\(n,m\leq10^6\)),求:
\[\prod_{i=1}^{n}\prod_{j=1}^{m}f(gcd(i,j))\]

题解

这个人(点这里)讲得很清楚\(\color{white}{\text{shing太强了}}\)
假设\(n\)\(n,m\)中较小的那个,讲一些在得出答案\(=\prod_{d=1}^{n}f(d)^{\sum_{k=1}^{\lfloor \frac{n}{d}\rfloor}{\mu(k)\lfloor \frac{n}{dk}\rfloor\lfloor \frac{m}{dk}\rfloor}}\)之后的事
\(p=dk\)则有答案\(=\prod_{d=1}^{n}f(d)^{\sum_{d\mid p}^{n}{\mu(\frac{p}{d})\lfloor \frac{n}{p}\rfloor\lfloor \frac{m}{p}\rfloor}}\)
把幂次上的\(\sum\)拿下来变成\(\prod\),答案\(=\prod_{d=1}^{n}\prod_{d\mid p}^{n}f(d)^{{\mu(\frac{p}{d})\lfloor \frac{n}{p}\rfloor\lfloor \frac{m}{p}\rfloor}}=\prod_{d=1}^{n}(\prod_{d\mid p}^{n}f(d)^{\mu(\frac{p}{d})} )^{\lfloor \frac{n}{p}\rfloor\lfloor \frac{m}{p}\rfloor}\)
括号里的部分\(g(d)=\prod_{d\mid p}^{n}f(d)^{\mu(\frac{p}{d})}\)\(n,m\)无关可以预处理,将每个\(f(a)^{\mu(b)}\)乘到\(g(a*b)\),预处理的时间复杂度为\(\frac{n}{1}+\frac{n}{2}+\frac{n}{3}+...+\frac{n}{n}\),大约是\(n*log n\)
接下来数论分块计算\(\prod_{d=1}^{n}g(d)^{\lfloor \frac{n}{p}\rfloor\lfloor \frac{m}{p}\rfloor}\)就行了,这部分的时间复杂度是\(\Theta(T(\sqrt n +\sqrt m))\)

代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define maxn 1000010
#define lim 1000000 
#define LL long long
using namespace std;
int read()
{
    int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)&&ch!='-')ch=getchar();
    if(ch=='-')f=-1,ch=getchar();
    while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
    return x*f;
}
void write(int x)
{
    if(x==0){putchar('0'),putchar('\n');return;}
    int f=0;char ch[20];
    if(x<0)putchar('-'),x=-x;
    while(x)ch[++f]=x%10+'0',x/=10;
    while(f)putchar(ch[f--]);
    putchar('\n');
    return;
}
const LL mod=1e9+7;
int n,m,t,f[maxn],pf[maxn],g[maxn],pg[maxn],p[maxn],no[maxn],cnt,mu[maxn];
int mul(int x,LL y){int res=1;while(y){if(y&1ll)res=(LL)res*(LL)x%mod;x=(LL)x*(LL)x%mod,y>>=1;}return res;}
int main()
{
    no[1]=mu[1]=1;
    rep(i,2,lim)
    {
        if(!no[i])p[++cnt]=i,mu[i]=-1;
        for(int j=1;j<=cnt&&i*p[j]<=lim;j++)
        {
            no[i*p[j]]=1;
            if(i%p[j]==0){mu[i*p[j]]=0;break;}
            else mu[i*p[j]]=-mu[i];
        }
    }
    f[1]=pf[1]=g[1]=1;
    rep(i,2,lim)f[i]=(f[i-1]+f[i-2])%mod,pf[i]=mul(f[i],mod-2),g[i]=1;
    rep(i,1,lim)
    {
        for(int j=i;j<=lim;j+=i)
        {
            if(mu[j/i]==1)g[j]=(LL)g[j]*(LL)f[i]%mod;
            else if(mu[j/i]==-1)g[j]=(LL)g[j]*(LL)pf[i]%mod;
        }
    }g[0]=pg[0]=1;
    rep(i,1,lim)g[i]=(LL)g[i-1]*(LL)g[i]%mod,pg[i]=mul(g[i],mod-2);
    t=read();
    while(t--)
    {
        n=read(),m=read();
        if(n>m)swap(n,m);int ans=1;
        for(int l=1,r=0;l<=n;l=r+1)
        {
            r=min(n/(n/l),m/(m/l));
            ans=(LL)ans*mul((LL)g[r]*(LL)pg[l-1]%mod,(LL)(n/l)*(LL)(m/l))%mod;
        }
        write(ans);
    }
    return 0;
}

猜你喜欢

转载自www.cnblogs.com/xzyf/p/10443257.html