一套帮助你理解 C 语言的测试题,欢迎使用!

在 steven kobes 上发现一套很有趣的C语言测试题,如果你招聘C语言相关开发人员,或者正在学习C语言,很值得做一做。

如果没有做,下面内容暂时不要看,最好自己先完成一遍。

OK,假设你做的答案没有完全正确,那你可以继续看下去了,否则,后面内容对你来说就是小菜一碟,不值得看。

第一题:

#include

static jmp_buf buf;

int main(void)

{

volatile int b = 3;

if (setjmp(buf) != 0)

{

printf("%dn", b);

exit(0);

}

b = 5;

longjmp(buf, 1);

}

输出结果为A)3 B)5 C)0 D)都不是

答案为B,也就是输出5。

关键点在于理解setjmp以及longjmp,(http://en.wikipedia.org/wiki/Setjmp.h )第一次运行到setjmp,会设置jmp_buf,然后返回0。当调用longjmp时,会把longjmp里面的非0值作为setjmp的返回值返回(如果longjmp的value参数为0,setjmp恢复后返回1,也就是当恢复到setjmp存储点的时候,setjmp一定不会返回0)。

setjmp-longjmp组合的用处类似于游戏中的存盘读盘功能,经常被用于类似C++的异常恢复操作。

第二题:

struct node

{

    int a;      

    int b;      

    int c;

};

struct node s = { 3, 5, 6 };

struct node *pt = &s;

printf("%dn", *(int*)pt);

返回结果为3,这个算是比较简单,pt为指向结构s的指针,然后将pt转换为int指针,进行dereference,取出一个int值,那就是结构中第一个数。

我们将题目改动一下,如下代码:

struct node

{

    char a;  

    char b;  

    short c;  

    int d;

};

struct node s = { 3, 5, 6, 99 };

struct node *pt = &s;

printf("%Xn", *(int*)pt);

需要注意的是一般32位C编译器都认为char是8bit,short是16bit,int为32bit,所以node在内存中应该正好是对齐的,也就是abc这几个成员之间没有空隙。最终结果应该为60503,如果不是,你可以看一下编译环境以及硬件配置。

第三题:

int foo(int x, int n){

int val = 1;

if (n > 0)

{

if (n % 2 == 1) val *= x;

val *= foo(x * x, n / 2);

}

return val;

}

这道题其实最简单的办法就是在纸上做一个推演计算,一步一步跑一下,就能得到答案了,这里面没有任何复杂的C语言概念。

第四题:

int a[5] = { 1, 2, 3, 4, 5 };

int *ptr = (int*)(&a + 1);

printf("%d %dn", *(a + 1), *(ptr – 1));

这道题考的其实是指向数组的指针,&a是一个隐式的指向int [5]数组的指针,它和int* ptr是不一样的,如果真要定义这个指针,应该是int (*ptoa)[5]。所以ptoa每一次加一操作都相当于跨越int a[5]的内存步长(也就是5个int长度),也就是说&a + 1其实就是指向了a[5]这个位置,实际上内存里面这个位置是非法的,但是对ptr的强制转换导致了后面ptr-1的内存步长改为了1个int长度,所以ptr-1实际指向了a[4]。至于*(a+1)没什么好说的,值就是2。

第五题:

void foo(int[][3]);

int main(void)

{

int a[3][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };

foo(a);

printf("dn", a[2][1]);

return 0;

}

void foo(int b[][3])

{

++b;

b[1][1] = 9;

}

其实和前一题有异曲同工之妙,++b的步长实际上是3个int,也就是++b运算以后,b指向{4,5,6}这个数组的开始,而b[1]就是{7,8,9}, b[1][1]实际上就是8这个值也就是main函数中的a[2][1].

第六题:

int a, b, c, d;

a = 3;

b = 5;

c = a, b;

d = (a, b);

printf("c=%d  ", c);

printf("d=%dn", d);

这个其实有两个C语言知识点,一个是等号操作符优先级高于逗号操作符,另一个是逗号操作符相当于运算逗号前半部后半部的表达式,然后返回后半部表达式的值。所以c等于a(先计算等号),而d等于b(逗号表达式返回b)。

第七题:

int a[][3] = {1, 2, 3, 4, 5, 6};

int (*ptr)[3] = a;

printf("%d %d ", (*ptr)[1], (*ptr)[2]);

++ptr;

printf("%d %dn", (*ptr)[1], (*ptr)[2]);

依然是2维数组相关题目,ptr为指向int [3]数组的指针,首先指向a[0],所以(*ptr)[1], (*ptr)[2]就是a[0][1], a[0][2].然后++ptr,相当于ptr指向了a[1],这时得到的是a[1][1],a[1][2],所以结果就是2,3, 5, 6。

第八题:

int *f1(void)

{

int x = 10;   return &x;

}

int *f2(void)

{

int *ptr;   *ptr = 10;   return ptr;

}

int *f3(void)

{

int *ptr;   ptr = malloc(sizeof *ptr);   return ptr;

}

这里考的是返回一个指针的问题,一般来说返回指针的函数,里面一定有malloc之类的内存申请操作,传入指针类型,则是对指针指向的内容做修改。如果想修改指针本身,那就要传入指针的指针。

第九题:

int i = 3;   int j;

j = sizeof(++i + ++i);

printf("i=%d j=%dn", i, j);

这道题考的内容其实就是sizeof,如果计算表达式,那么表达式是不会做计算的,也就是不管加加减减,sizeof就是针对i计算大小。在32位机器上,这个j应该为4。

我将代码扩展了一下,看看大家能不能想到结果:

short m;    int n;     double dn;

int j = sizeof ( m + n);

int k = sizeof ( n + n);

int l = sizeof ( m);

int l2 = sizeof (m * m);

int l3 = sizeof (m + dn);

int l4 = sizeof (m + m);

第十题:

void f1(int*, int);

void (*p[2])(int*, int);

int main(void)

{

int a = 3;

int b = 5;

p[0] = f1;

p[1] = f1;

p[0](&a, b);

printf("%d %d ", a, b);

p[1](&a, b);

printf("%d %dn", a, b);

return 0;

}

void f1(int *p, int q)

{

int tmp = *p;   *p = q;   q = tmp;

}

函数指针的数组p勉强算是一个知识点,另外一个知识点就是第八题提到的,对于int q这样的参数,是不会修改其内容的。而*p则可修改p指向的内容。

第十一题:

void e(int);

int main(void)

{

int a = 3;

e(a);

putchar('n');

return 0;

}

void e(int n)

{

if (n > 0)

{

e(–n);

printf("%d ", n);

e(–n);

}

}

这道题自己debug一下就完全明白了,主要知识点就是递归调用,另外前置后置自减操作的返回值问题。

第十二题:

typedef int (*test)(float*, float*);

test tmp;

也是经常出现的一类题,对复杂的指针定义做解析,实际上K&R里面(5.12)也有介绍该如何解读。不熟悉的朋友可以试着练习练习标准库中的bsearch,qsort以及signal函数。

第十三题:

char p;

char buf[10] = {1, 2, 3, 4, 5, 6, 9, 8};

p = (buf + 1)[5];

printf("%dn", p);

也就是p实际指向*(buf + 1 + 5),写的更诡异一些就是p=5[buf +1];也是同样结果。

第十四题:

类似十三题,也是把数组弄得有些诡异,(p += sizeof(int))[-1];相当于*(p + sizeof(int) + (-1))。

第十五题:

int ripple(int n, …)

{

int i, j, k;

va_list p;

k = 0;

j = 1;

va_start(p, n);

for (; j < n; ++j)

    {

        i = va_arg(p, int);

        for (; i; i &= i – 1)

        ++k;

    }

    return k;

}

int main(void)

{

    printf("%dn", ripple(3, 5, 7));

    return 0;

}

这道题也是两个知识点,一个是可变参数函数定义以及如何实现,va_arg会把5,7依次取出来。另一个知识点是i &= i-1,实际上是计算了i二进制形式中1的个数,每次计算都会消减掉最低有效位上的1。比如7二进制表示为111。i &= i –1的计算结果依次为110,100, 000 (也就是0)。在hacker’s Delights这本书里介绍了很多类似技巧。

第十六题:

int counter(int i)

{

static int count = 0;

count = count + i;

return count;

}

int main(void)

{

int i, j;

for (i = 0; i <= 5; i++)  j = counter(i);

    printf("%dn", j);

    return 0;

}

只要了解静态局部变量的真正内涵,这道题就是小菜啦。

猜你喜欢

转载自blog.csdn.net/weixin_33804582/article/details/86826822
今日推荐