UOJ#410. 【IOI2018】会议

传送门
首先可以设 \(f[l][r]\) 表示 \([l,r]\) 的答案
\(x\) 为区间 \([l,r]\) 的最大值的位置,那么
\(f[l][r] = min(f[l][x-1]+h[x]\times (r-x+1),f[x+1][r]+h[x]\times (x-l+1))\)
这样的 \(dp\) 结构形成了笛卡尔树
那么考虑在笛卡尔树上维护 \(dp\)
对于笛卡尔树上的一个点 \(x\) 它有一个区间 \([l,r]\),考虑维护 \(f[l][i]\)\(f[i][r],i\in [l,r]\)
对于固定左端点的 \(f[l][i]\)(\(f[i][r]\) 类似)
1首先可以由 \(x\) 在笛卡尔树的左儿子继承,即 \(i<x\)
2\(i=x\) 那么 \(f[l][x]=f[l][x-1]+h[x]\)
3\(i>x\) 那么 \(f[l][i]=min(f[l][x-1]+h[x]\times (i-x+1),f[x+1][i]+h[x]\times (x-l+1))\)
前两个好办,对于3,可以证明,这个 \(min\) 的函数是存在一个分界点,使得在左边一个更优,而右边另一个最优,并且具有可二分性
证明
只需要证明下面的东西即可
\(f[l][x-1]+(i-x+1)\times h[x]-(f[x+1][i]+(x-l+1)\times h[x])(\ge)\le\\ f[l][x-1]+((i+1)-x+1)\times h[x]-(f[x+1][i+1]+(x-l+1)\times h[x])\)
因为
\(f[x+1][i+1]-f[x+1][i]\le h[x]\)
那么可以证明上式取 \(\le\)
那么直接二分端点就好了
现在只需要支持区间加,区间对等差数列取 \(min\),单点询问这些操作
可以离线线段树统计答案或者主席树在线回答

# include "meetings.h"
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn(7.5e5 + 5);

struct Segment {
    ll covk[maxn << 2], covb[maxn << 2], add[maxn << 2], vl[maxn << 2], vr[maxn << 2];
    int cov[maxn << 2];

    inline void Cover(int x, int l, int r, ll k, ll b) {
        cov[x] = 1, add[x] = 0, vl[x] = k * l + b, vr[x] = k * r + b, covk[x] = k, covb[x] = b;
    }

    inline void Addv(int x, ll v) {
        add[x] += v, vl[x] += v, vr[x] += v;
    }

    inline void Pushdown(int x, int l, int mid, int r) {
        if (cov[x]) {
            Cover(x << 1, l, mid, covk[x], covb[x]);
            Cover(x << 1 | 1, mid + 1, r, covk[x], covb[x]);
            cov[x] = 0;
        }
        if (add[x]) Addv(x << 1, add[x]), Addv(x << 1 | 1, add[x]), add[x] = 0;
    }

    void Modify(int x, int l, int r, int ql, int qr, ll k, ll b) {
        if (ql <= l && qr >= r) Cover(x, l, r, k, b);
        else {
            int mid = (l + r) >> 1;
            Pushdown(x, l, mid, r);
            if (ql <= mid) Modify(x << 1, l, mid, ql, qr, k, b);
            if (qr > mid) Modify(x << 1 | 1, mid + 1, r, ql, qr, k, b);
            vl[x] = vl[x << 1], vr[x] = vr[x << 1 | 1];
        }
    }

    void Addval(int x, int l, int r, int ql, int qr, ll v) {
        if (ql <= l && qr >= r) Addv(x, v);
        else {
            int mid = (l + r) >> 1;
            Pushdown(x, l, mid, r);
            if (ql <= mid) Addval(x << 1, l, mid, ql, qr, v);
            if (qr > mid) Addval(x << 1 | 1, mid + 1, r, ql, qr, v);
            vl[x] = vl[x << 1], vr[x] = vr[x << 1 | 1];
        }
    }

    ll Query(int x, int l, int r, int p) {
        if (l == r) return vl[x];
        int mid = (l + r) >> 1;
        Pushdown(x, l, mid, r);
        ll ret = (p <= mid ? Query(x << 1, l, mid, p) : Query(x << 1 | 1, mid + 1, r, p));
        vl[x] = vl[x << 1], vr[x] = vr[x << 1 | 1];
        return ret;
    }

    void Chkmin(int x, int l, int r, int ql, int qr, ll k, ll b, ll v) {
        if (ql <= l && qr >= r) {
            if (k * r + b <= vr[x] + v && k * l + b <= vl[x] + v) {
                Modify(x, l, r, l, r, k, b);
                return;
            }
            if (k * l + b >= vl[x] + v && k * r + b >= vr[x] + v) {
                Addval(x, l, r, l, r, v);
                return;
            }
        }
        int mid = (l + r) >> 1;
        Pushdown(x, l, mid, r);
        if (ql <= mid) Chkmin(x << 1, l, mid, ql, qr, k, b, v);
        if (qr > mid) Chkmin(x << 1 | 1, mid + 1, r, ql, qr, k, b, v);
        vl[x] = vl[x << 1], vr[x] = vr[x << 1 | 1];
    }
} fix_l, fix_r;

int q, n, h[maxn], st[20][maxn], lg[maxn], qryl[maxn], qryr[maxn];
vector <ll> ans;
vector <int> qry[maxn];

inline int Max(int x, int y) {
    return h[x] > h[y] ? x : y;
}

inline int RMQ(int l, int r) {
    int len = lg[r - l + 1];
    return Max(st[len][l], st[len][r - (1 << len) + 1]);
}

void Solve(int l, int r) {
    if (l > r) return;
    int mid = RMQ(l, r), i, len = qry[mid].size(), id;
    ll fl = 0, fr = 0;
    Solve(l, mid - 1), Solve(mid + 1, r);
    for (i = 0; i < len; ++i) {
        id = qry[mid][i];
        ans[id] = (ll)h[mid] * (qryr[id] - qryl[id] + 1);
        if (qryl[id] < mid) ans[id] = min(ans[id], (ll)(qryr[id] - mid + 1) * h[mid] + fix_r.Query(1, 1, n, qryl[id]));
        if (qryr[id] > mid) ans[id] = min(ans[id], (ll)(mid - qryl[id] + 1) * h[mid] + fix_l.Query(1, 1, n, qryr[id]));
    }
    if (l < mid) fl = fix_r.Query(1, 1, n, l);
    if (r > mid) fr = fix_l.Query(1, 1, n, r);
    fix_r.Chkmin(1, 1, n, l, mid, -h[mid], fr + (ll)h[mid] * (mid + 1), (ll)h[mid] * (r - mid + 1));
    fix_l.Chkmin(1, 1, n, mid, r, h[mid], fl - (ll)h[mid] * (mid - 1), (ll)h[mid] * (mid - l + 1));
}

vector <ll> minimum_costs(vector <int> _h, vector <int> _l, vector <int> _r) {
    int i, j, mid;
    q = _l.size(), n = _h.size();
    for (i = 0; i < n; ++i) st[0][i + 1] = i + 1, h[i + 1] = _h[i];
    for (i = 2; i <= n; ++i) lg[i] = lg[i >> 1] + 1;
    for (j = 1; j <= lg[n]; ++j)
        for (i = 1; i + (1 << j) - 1 <= n; ++i)
            st[j][i] = Max(st[j - 1][i], st[j - 1][i + (1 << (j - 1))]);
    ans.resize(q);
    for (i = 0; i < q; ++i) {
        mid = RMQ(_l[i] + 1, _r[i] + 1);
        qry[mid].push_back(i);
        qryl[i] = _l[i] + 1, qryr[i] = _r[i] + 1;
    }
    Solve(1, n);
    return ans;
}

猜你喜欢

转载自www.cnblogs.com/cjoieryl/p/10345049.html