mysql IO性能参数--redoLog和undoLog写日志方式的参数

版权声明:转载请注明出处 https://blog.csdn.net/h2604396739/article/details/86583319

binlogd的写入方式与参数

binlog cache 分配了一片内存,每个线程一个,参数 binlog_cache_size 用于控制单个线程内 binlog cache 所占内存的大小。如果超过了这个参数规定的大小,就要暂存到磁盘。
事务提交的时候,执行器把 binlog cache 里的完整事务写入到文件系统的page catche中,并清空 binlog cache,然后在合适的机会进行fsync,即将数据持久化到磁盘中。

write阶段,指的就是指把日志写入到文件系统的 page cache,并没有把数据持久化到磁盘,所以速度比较快。
fsync阶段,将数据持久化到磁盘的操作。一般情况下,我们认为 fsync 才占磁盘的 IOPS。

write 和 fsync 的时机,是由参数 sync_binlog 控制的:

  • sync_binlog=0 的时候,表示每次提交事务都只 write,不 fsync;
  • sync_binlog=1 的时候,表示每次提交事务都会执行 fsync;
  • sync_binlog=N(N>1) 的时候,表示每次提交事务都 write,但累积 N 个事务后才 fsync。

因此,在出现 IO 瓶颈的场景里,将 sync_binlog 设置成一个比较大的值,可以提升性能。在实际的业务场景中,考虑到丢失日志量的可控性,一般不建议将这个参数设成 0,比较常见的是将其设置为 100~1000 中的某个数值。
但是,将 sync_binlog 设置为 N,对应的风险是:如果主机发生异常重启,会丢失最近 N 个事务的 binlog 日志。

redo log 的写入机制

redoLog的写过程

  1. 存在 redo log buffer 中,物理上是在 MySQL 进程内存中;
  2. 写到磁盘 (write),但是没有持久化(fsync),物理上是在文件系统的 page cache 里面;
  3. 持久化到磁盘,对应的是 hard disk;

日志写到 redo log buffer 是很快的,wirte 到 page cache 也差不多,但是持久化到磁盘的速度就慢多了。
为了控制 redo log 的写入策略,InnoDB 提供了 innodb_flush_log_at_trx_commit 参数,它有三种可能取值:

  • 0:表示每次事务提交时都只是把 redo log 留在 redo log buffer 中 ;
  • 1:表示每次事务提交时都将 redo log 直接持久化到磁盘;
  • 2:表示每次事务提交时都只是把 redo log 写到 page cache。

InnoDB 有一个后台线程,每隔 1 秒,就会把 redo log buffer 中的日志,调用 write 写到文件系统的 page cache,然后调用 fsync 持久化到磁盘。
注意,事务执行中间过程的 redo log 也是直接写在 redo log buffer 中的,这些 redo log 也会被后台线程一起持久化到磁盘。也就是说,一个没有提交的事务的 redo log,也是可能已经持久化到磁盘的。

除了后台线程每秒一次的轮询操作外,还有两种场景会让一个没有提交的事务的 redo log 写入到磁盘中。

  1. 一种是,redo log buffer 占用的空间即将达到 innodb_log_buffer_size 一半的时候,后台线程会主动写盘。注意,由于这个事务并没有提交,所以这个写盘动作只是 write,而没有调用 fsync,也就是只留在了文件系统的 page cache。
  2. 另一种是,并行的事务提交的时候,顺带将这个事务的 redo log buffer 持久化到磁盘。假设一个事务 A 执行到一半,已经写了一些 redo log 到 buffer 中,这时候有另外一个线程的事务 B 提交,如果 innodb_flush_log_at_trx_commit 设置的是 1,那么按照这个参数的逻辑,事务 B 要把 redo log buffer 里的日志全部持久化到磁盘。这时候,就会带上事务 A 在 redo log buffer 里的日志一起持久化到磁盘。

mysql redoLog的组提交机制

日志逻辑序列号(log sequence number,LSN):单调递增的,用来对应 redo log 的一个个写入点。每次写入长度为 length 的 redo log, LSN 的值就会加上 length。
多个事务之间的redo log可以按组一次写入,并且对单个事务中redolog和binlog的fsync也放到一起,这样减充分减少 IOPS 的消耗。

binlog 组提交的两个参数

想提升 binlog 组提交的效果,可以通过设置 binlog_group_commit_sync_delay 和 binlog_group_commit_sync_no_delay_count 来实现。
binlog_group_commit_sync_delay 参数,表示延迟多少微秒后才调用 fsync;
binlog_group_commit_sync_no_delay_count 参数,表示累积多少次以后才调用 fsync。
这两个条件是或的关系,也就是说只要有一个满足条件就会调用 fsync。
所以,当 binlog_group_commit_sync_delay 设置为 0 的时候,binlog_group_commit_sync_no_delay_count 也无效了。

WAL 机制是减少磁盘写,可是每次提交事务都要写 redo log 和 binlog,这磁盘读写次数也没变少呀?
现在你就能理解了,WAL 机制主要得益于两个方面:
redo log 和 binlog 都是顺序写,磁盘的顺序写比随机写速度要快;
组提交机制,可以大幅度降低磁盘的 IOPS 消耗。

mysql IO性能瓶颈的解决

MySQL 现在出现了性能瓶颈,而且瓶颈在 IO 上,可以通过哪些方法来提升性能呢?可以考虑以下三种方法:
设置 binlog_group_commit_sync_delay 和 binlog_group_commit_sync_no_delay_count 参数,减少 binlog 的写盘次数。这个方法是基于“额外的故意等待”来实现的,因此可能会增加语句的响应时间,但没有丢失数据的风险。
将 sync_binlog 设置为大于 1 的值(比较常见是 100~1000)。这样做的风险是,主机掉电时会丢 binlog 日志。
将 innodb_flush_log_at_trx_commit 设置为 2。这样做的风险是,主机掉电的时候会丢数据。

不建议你把 innodb_flush_log_at_trx_commit 设置成 0。因为把这个参数设置成 0,表示 redo log 只保存在内存中,这样的话 MySQL 本身异常重启也会丢数据,风险太大。而 redo log 写到文件系统的 page cache 的速度也是很快的,所以将这个参数设置成 2 跟设置成 0 其实性能差不多,但这样做 MySQL 异常重启时就不会丢数据了,相比之下风险会更小。

在什么场景下将sync_binlog和innodb_flush_log_trx_commit改成“非双 1”?

双1含义:

  • sync_binlog为1,说明每次事务提交,binglog都会进行fsync
  • innodb_flush_log_trx_commit为1,每次事务提交,redoLog都会进行fsync

非双1(降低IO性能消耗)的场景:

  • 业务高峰期。一般如果有预知的高峰期,DBA 会有预案,把主库设置成“非双1”。
  • 备库延迟,为了让备库尽快赶上主库。
  • 用备份恢复主库的副本,应用 binlog 的过程,这个跟上一种场景类似。
  • 批量导入数据的时候。

一般情况下,把生产库改成“非双 1”配置,是设置 innodb_flush_logs_at_trx_commit=2、sync_binlog=1000。

猜你喜欢

转载自blog.csdn.net/h2604396739/article/details/86583319