Java多线程_ReentrantLock

ReentrantLock是重入锁,它与synchronized很像,它是synchronized的加强版,因为它具有一些synchronized没有的功能。
下面我们看看两者的区别:
synchronized具有一定的局限性:

  • 当线程尝试获取锁的时候,如果获取不到锁会一直阻塞;
  • 如果获取锁的线程进入休眠或者阻塞,除非当前线程异常,否则其他线程尝试获取锁必须一直等待;
  • 是非公平的。

而ReentrantLock实现了AQS,可以完成下列功能:

  • 可中断响应;
  • 锁申请等待限时;
  • 公平锁;
  • 与Condition一起使用,实现synchronized与wait/notify的功能。

引入几个概念:
提到ReentrantLock,我们不得不明白几个概念:

  • 可重入锁。可重入锁是指同一个线程可以多次获取同一把锁。ReentrantLock和synchronized都是可重入锁。
  • 可中断锁。可中断锁是指线程尝试获取锁的过程中,是否可以响应中断。synchronized是不可中断锁,ReentrantLock则提供了中断功能。
  • 公平锁与非公平锁。公平锁是指多个线程必须按顺序,不许插队。非公平锁允许插队。synchronized是非公平锁,而ReentrantLock的默认实现是非公平锁,但是也可以设置为公平锁。
  • CAS,在前面已经提到。

使用示例
具体用法通过简单代码通过代码演示:

import java.util.concurrent.locks.ReentrantLock;

public class ReentrantLockDemo implements Runnable {
    static ReentrantLock lock = new ReentrantLock();
    static int count = 0;

    @Override
    public void run() {
        for (int i = 0; i < 10000; i++) {
            lock.lock();
            try {
                count++;
            } finally {
                lock.unlock();
            }
        }

    }

    public static void main(String[] args) {
        ReentrantLockDemo r = new ReentrantLockDemo();
        Thread t1 = new Thread(r);
        Thread t2 = new Thread(r);
        t1.start();
        t2.start();
        try {
            t1.join();
            t2.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(count);
        //结果输出:20000
    }
}

通过ReentrantLock解决死锁问题:

import java.util.concurrent.locks.ReentrantLock;

public class KillDeadlockDemo implements Runnable {
    static ReentrantLock lock1 = new ReentrantLock();
    static ReentrantLock lock2 = new ReentrantLock();
    int lock;

    public KillDeadlockDemo(int lock) {
        super();
        this.lock = lock;
    }

    @Override
    public void run() {
        try {
            if (lock == 1) {
                lock1.lockInterruptibly();
                Thread.sleep(500);
                lock2.lockInterruptibly();
            } else {
                lock2.lockInterruptibly();
                Thread.sleep(500);
                lock1.lockInterruptibly();
            }
        } catch (InterruptedException e) {
        } finally {
            if (lock1.isHeldByCurrentThread()) {
                lock1.unlock();
            }
            if (lock2.isHeldByCurrentThread()) {
                lock2.unlock();
            }
            System.out.println(Thread.currentThread().getName() + "退出!");
        }

    }

    public static void main(String[] args) {
        KillDeadlockDemo kdd1 = new KillDeadlockDemo(1);
        KillDeadlockDemo kdd2 = new KillDeadlockDemo(2);
        Thread t1 = new Thread(kdd1);
        Thread t2 = new Thread(kdd2);
        t1.start();
        t2.start();
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        t2.interrupt();
      /*
       *结果输出:
       *Thread-1退出!
       *Thread-0退出!
       */
    }
}

使用 tryLock()或者tryLock(long timeout, TimeUtil unit) 方法进行一次限时的锁等待,也可以解决死锁问题:

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;

public class TryLockDemo implements Runnable {
    static ReentrantLock lock = new ReentrantLock();

    @Override
    public void run() {
        try {
            if (lock.tryLock(1, TimeUnit.SECONDS)) {
                Thread.sleep(1100);
            } else {
                System.out.println(Thread.currentThread().getName() + "获取锁失败!释放");
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            if (lock.isHeldByCurrentThread()) {
                lock.unlock();
            }
        }
    }

    public static void main(String[] args) {
        TryLockDemo td = new TryLockDemo();
        Thread thread1 = new Thread(td);
        Thread thread2 = new Thread(td);
        thread1.start();
        thread2.start();
        try {
            thread1.join();
            thread2.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
              //结果输出:Thread-1获取锁失败!释放
    }
}

公平锁演示:

扫描二维码关注公众号,回复: 4984915 查看本文章
import java.util.concurrent.locks.ReentrantLock;

public class FairLockDemo implements Runnable {
    static ReentrantLock lock = new ReentrantLock(true);

    @Override
    public void run() {
        while (true) {
            try {
                lock.lock();
                System.out.println(Thread.currentThread().getName() + " get lock");
                Thread.sleep(1000);
            } catch (InterruptedException e) {
            } finally {
                lock.unlock();
            }
        }
    }

    public static void main(String[] args) {
        FairLockDemo fld = new FairLockDemo();
        Thread t1 = new Thread(fld);
        Thread t2 = new Thread(fld);
        Thread t3 = new Thread(fld);
        t1.start();
        t2.start();
        t3.start();
/*
*Thread-0 get lock
*Thread-1 get lock
*Thread-2 get lock
*Thread-0 get lock
*Thread-1 get lock
*Thread-2 get lock
*..........
*/
    }
}

浅谈原理

ReentrantLock使用到了AQS,AQS的全称为AbstractQueuedSynchronizer,这个类也是在java.util.concurrent.locks下面。这个类似乎很不容易看懂,因为它仅仅是提供了一系列公共的方法,让子类来调用。

先以ReentrantLock排它锁为例开始展开讲解如何利用AQS的。
ReentrantLock的构造方法有两个,如下图所示:

 

对象中有一个属性叫sync,有两种不同的实现类,默认是“NonfairSync”非公平锁来实现,而另一个“FairSync”公平锁它们都是排它锁的内部类,不论用那一个都能实现排它锁,只是内部可能有点原理上的区别。先以“NonfairSync”类为例,它的lock()方法

 


lock()方法先通过CAS尝试将状态从0修改为1。若直接修改成功,前提条件自然是锁的状态为0,则直接将线程的OWNER修改为当前线程。若上一个动作未成功,则会间接调用了acquire(1)来继续操作,这个acquire(int)方法就是在AbstractQueuedSynchronizer当中了。


首先获取这个锁的状态,如果状态为0,则尝试设置状态为传入的参数(这里就是1),若设置成功就代表自己获取到了锁,返回true了。状态为0设置1的动作在外部就有做过一次,内部再一次做只是提升概率,而且这样的操作相对锁来讲不占开销。
○ 如果状态不是0,则判定当前线程是否为排它锁的Owner,如果是Owner则尝试将状态增加acquires(也就是增加1),如果这个状态值越界,则会抛出异常提示,若没有越界,将状态设置进去后返回true.如果状态不是0,且自身不是owner,则返回false。



猜你喜欢

转载自www.cnblogs.com/ericz2j/p/10292664.html