机器学习算法总结(三)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Jorocco/article/details/82227879

1、决策树

决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。

1.2 决策树的学习过程

一棵决策树的生成过程主要分为以下3个部分:

  • 特征选择:特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准标准,从而衍生出不同的决策树算法。
  • 决策树生成: 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。 树结构来说,递归结构是最容易理解的方式。
  • 剪枝:决策树容易过拟合,一般来需要剪枝,缩小树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。

1.3 基于信息论的三种决策树算法

划分数据集的最大原则是:使无序的数据变的有序。如果一个训练数据中有20个特征,那么选取哪个做划分依据?这就必须采用量化的方法来判断,量化划分方法有多重,其中一项就是“信息论度量信息分类”。基于信息论的决策树算法有ID3、CART和C4.5等算法,其中C4.5和CART两种算法从ID3算法中衍生而来。

  CART和C4.5支持数据特征为连续分布时的处理,主要通过使用二元切分来处理连续型变量,即求一个特定的值-分裂值:特征值大于分裂值就走左子树,或者就走右子树。这个分裂值的选取的原则是使得划分后的子树中的“混乱程度”降低,具体到C4.5和CART算法则有不同的定义方式。

  ID3算法由Ross Quinlan发明,建立在“奥卡姆剃刀”的基础上:越是小型的决策树越优于大的决策树(be simple简单理论)。ID3算法中根据信息论的信息增益评估和选择特征,每次选择信息增益最大的特征做判断模块。ID3算法可用于划分标称型数据集,没有剪枝的过程,为了去除过度数据匹配的问题,可通过裁剪合并相邻的无法产生大量信息增益的叶子节点(例如设置信息增益阀值)。使用信息增益的话其实是有一个缺点,那就是它偏向于具有大量值的属性–就是说在训练集中,某个属性所取的不同值的个数越多,那么越有可能拿它来作为分裂属性,而这样做有时候是没有意义的,另外ID3不能处理连续分布的数据特征,于是就有了C4.5算法。CART算法也支持连续分布的数据特征。

  C4.5是ID3的一个改进算法,继承了ID3算法的优点。C4.5算法用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足在树构造过程中进行剪枝;能够完成对连续属性的离散化处理;能够对不完整数据进行处理。C4.5算法产生的分类规则易于理解、准确率较高;但效率低,因树构造过程中,需要对数据集进行多次的顺序扫描和排序。也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。

  CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。为了简化决策树的规模,提高生成决策树的效率,就出现了根据GINI系数来选择测试属性的决策树算法CART。

1.4 构造一颗决策树

决策树归纳算法(ID3)
在决策树算法中,比较重要的一点是我们如何确定哪个属性应该先选择出来,哪个属性应该后选择出来当做树的节点。这里就涉及到了一个新的概念,叫做信息获取量,公式如下:
Gain(A)=Info(D)-Info_A(D) —->A属性的信息获取量的值就等于,不按任何属性进行分类的时候的信息量加上有按A这个属性进行分类的时候的信息量(注意这里信息量的符号是负号,所以说“加上”)。
以下是否购买电脑的案例为例子,给出了14个实例,如下图所示:
这里写图片描述
不按任何属性进行分类的情况下,计算信息获取量Info(D):
这里写图片描述
以年龄属性进行分类的情况下,计算信息获取量:
这里写图片描述
所以,Gain(age)=0.940-0.694=0.246 bits
同理,我们可以算出Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048。比较大小,年龄的信息获取量是最大的,所以选择年龄作为第一个根节点。再次同理,后面的节点选择也是按照这样的计算方法来决定以哪个属性作为节点。

结束条件
当我们使用递归的方法来创建决策树时,什么时候停止节点的创建很关键。综上,停止节点创建的条件有以下几点:
a、给定节点的所有样本属性都属于同一种标记的时候,比如(2)中的例子,以年龄为属性创建的节点下,有三个分支senior,youth、middle_age。其中middle_age的所有实例的标记都是yes,也就是说中年人都会买电脑,这种情况下,这个节点就可以设置成树叶节点了。
b、当没有剩余属性用来进一步划分样本时,就停止节点的创建,采用多数表决。
c、分枝

1.5 减枝(避免overfitting)
当树的深度太大时,设计的算法在训练集上的表现会比较好,但是在测试集上的表现却会很一般,这时我们就要对树进行一定的裁剪:
(1)先剪枝
当分到一定程度,就不向下增长树了。
(2)后剪枝

1.6 决策树优缺点
决策树的优点: 直观,便于理解,小规模数据集有效
决策树的缺点:处理连续变量不好;类别较多时,错误增加的比较快;可规模性一般。

决策树模型还有一个很大的优势,就是可以容忍缺失数据。如果决策树中某个条件缺失,可以按一定的权重分配继续往以后的分支走,最终的结果可能有多个,每个结果又一定的概率,即:
最终结果=某个分支的结果 x 该分支的权重(该分支下的结果数/总结果数)

决策树主要解决分类问题(结果是离散数据),如果结果是数字,不会考虑这样的事实:有些数字相差很近,有些数字相差很远。为了解决这个问题,可以用方差来代替熵或基尼不纯度。

实例

#!/usr/bin/python
# -*-coding:utf-8-*-
# __author__ = 'ShenJun'

import pandas as pda
from sklearn.tree import DecisionTreeClassifier as DTC
from sklearn.tree import export_graphviz
from sklearn.externals.six import StringIO
import numpy as np
path="F:\\网络爬虫\\视频课程\\源码\源码\\lesson.csv"
fname=open(path,encoding="utf-8")
data=pda.read_csv(fname)
x=data.iloc[:,1:5].as_matrix()
y=data.iloc[:,5].as_matrix()
for i in range(0,len(x)):
    for j in range(0,len(x[i])):
        thisdata=x[i][j]
        if(thisdata=="是" or thisdata=="多" or thisdata=="高"):
            x[i][j]=int(1)
        else:
            x[i][j]=int(-1)
for i in range(0,len(y)):
    thisdata=y[i]
    if(thisdata=="高"):
        y[i]=1
    else:
        y[i]=-1
#转化格式,将x,y转化为数据框,然后再转化为数组并指定格式
x1=pda.DataFrame(x)
y1=pda.DataFrame(y)
x2=x1.as_matrix().astype(int)
y2=y1.as_matrix().astype(int)

#建立决策树
# print(type(y2))
# print(type(x2))
dtc=DTC(criterion="entropy")
dtc.fit(x2,y2)
#直接预测销量高低
x3=np.array([1,-1,-1,1],[1,1,1,1],[-1,1,-1,1])
rst=dtc.predict(x3)
print(rst)

#可视化决策树,要通过安装export_graphviz软件进行打开
with open("J:\\Program\\Python\\Python爬虫\\数据分析与数据挖掘\\dtc.dot","w") as file:
    export_graphviz(dtc,feature_names=["combat","num","promotion","datum"],out_file=file)

2、Kmeans聚类算法

2.1 Kmeans算法流程
输入:聚类个数k,数据集Xmxn。
输出:满足方差最小标准的k个聚类。

(1) 选择k个初始中心点,例如c[0]=X[0] , … , c[k-1]=X[k-1];

(2) 对于X[0]….X[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i;

(3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的样本的每个特征的均值};

(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值或者达到最大迭代次数。

Kmeans的时间复杂度:O(tkmn),空间复杂度:O((m+k)n)。其中,t为迭代次数,k为簇的数目,m为样本数,n为特征数。

2.2 Kmeans算法优缺点

优点
(1). 算法原理简单。需要调节的超参数就是一个k。

(2). 由具有出色的速度和良好的可扩展性。

缺点
(1). 在 Kmeans 算法中 k 需要事先确定,这个 k 值的选定有时候是比较难确定。

(2). 在 Kmeans 算法中,首先需要初始k个聚类中心,然后以此来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响,一旦初始值选择的不好,可能无法得到有效的聚类结果。多设置一些不同的初值,对比最后的运算结果,一直到结果趋于稳定结束。

(3). 该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。

(4). 对离群点很敏感。

(5). 从数据表示角度来说,在 Kmeans 中,我们用单个点来对 cluster 进行建模,这实际上是一种最简化的数据建模形式。这种用点来对 cluster 进行建模实际上就已经假设了各 cluster的数据是呈圆形(或者高维球形)或者方形等分布的。不能发现非凸形状的簇。但在实际生活中,很少能有这种情况。所以在 GMM 中,使用了一种更加一般的数据表示,也就是高斯分布。

(6). 从数据先验的角度来说,在 Kmeans 中,我们假设各个 cluster 的先验概率是一样的,但是各个 cluster 的数据量可能是不均匀的。举个例子,cluster A 中包含了10000个样本,cluster B 中只包含了100个。那么对于一个新的样本,在不考虑其与A cluster、 B cluster 相似度的情况,其属于 cluster A 的概率肯定是要大于 cluster B的。

(7). 在 Kmeans 中,通常采用欧氏距离来衡量样本与各个 cluster 的相似度。这种距离实际上假设了数据的各个维度对于相似度的衡量作用是一样的。但在 GMM 中,相似度的衡量使用的是后验概率 αcG(x|μc,∑c) ,通过引入协方差矩阵,我们就可以对各维度数据的不同重要性进行建模。

(8). 在 Kmeans 中,各个样本点只属于与其相似度最高的那个 cluster ,这实际上是一种 hard clustering 。

2.3 K值的确定

2.3.1 根据问题内容确定

2.3.2 肘部法则
如果问题中没有指定k的值,可以通过肘部法则这一技术来估计聚类数量。肘部法则会把不同k值的成本函数值画出来。随着k值的增大,平均畸变程度会减小;每个类包含的样本数会减少,于是样本离其重心会更近。但是,随着k值继续增大,平均畸变程度的改善效果会不断减低。k值增大过程中,畸变程度的改善效果下降幅度最大的位置对应的k值就是肘部。为了让读者看的更加明白,下面让我们通过一张图用肘部法则来确定最佳的k值。下图数据明显可分成两类:
这里写图片描述
从图中可以看出,k值从1到2时,平均畸变程度变化最大。超过2以后,平均畸变程度变化显著降低。因此最佳的k是2。

2.3.3 与层次聚类结合
经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类。

2.3.4 稳定性方法
稳定性方法对一个数据集进行2次重采样产生2个数据子集,再用相同的聚类算法对2个数据子集进行聚类,产生2个具有k个聚类的聚类结果,计算2个聚类结果的相似度的分布情况。2个聚类结果具有高的相似度说明k个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数。采用次方法试探多个k,找到合适的k值。

2.3.5 使用canopy算法进行初始划分
基于Canopy Method的聚类算法将聚类过程分为两个阶段

(1) 聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理;

(2) 在各个Canopy内使用传统的聚类方法(如Kmeans),不属于同一Canopy的对象之间不进行相似性计算。

从这个方法起码可以看出两点好处:首先,Canopy不要太大且Canopy之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于Kmeans这样的聚类方法是需要人为指出K的值的,通过(1)得到的Canopy个数完全可以作为这个k值,一定程度上减少了选择k的盲目性。

2.4 初始质心的选取
选择适当的初始质心是基本kmeans算法的关键步骤。常见的方法是随机的选取初始中心,但是这样簇的质量常常很差。处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE(误差的平方和)的簇集。这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数。

第二种有效的方法是,取一个样本,并使用层次聚类技术对它聚类。从层次聚类中提取k个簇,并用这些簇的质心作为初始质心。该方法通常很有效,但仅对下列情况有效:(1)样本相对较小,例如数百到数千(层次聚类开销较大);(2) k相对于样本大小较小。

第三种选择初始质心的方法,随机地选择第一个点,或取所有点的质心作为第一个点。然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点。使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的。但是,这种方法可能选中离群点。此外,求离当前初始质心集最远的点开销也非常大。为了克服这个问题,通常该方法用于点样本。由于离群点很少(多了就不是离群点了),它们多半不会在随机样本中出现。计算量也大幅减少。

第四种方法就是上面提到的canopy算法。

2.5 距离的度量

常用的距离度量方法包括:欧几里得距离和余弦相似度。两者都是评定个体间差异的大小的。

欧氏距离是最常见的距离度量,而余弦相似度则是最常见的相似度度量,很多的距离度量和相似度度量都是基于这两者的变形和衍生,所以下面重点比较下两者在衡量个体差异时实现方式和应用环境上的区别。

借助三维坐标系来看下欧氏距离和余弦相似度的区别:
这里写图片描述

从图上可以看出距离度量衡量的是空间各点间的绝对距离,跟各个点所在的位置坐标(即个体特征维度的数值)直接相关;而余弦相似度衡量的是空间向量的夹角,更加的是体现在方向上的差异,而不是位置。如果保持A点的位置不变,B点朝原方向远离坐标轴原点,那么这个时候余弦相似cosθ是保持不变的,因为夹角不变,而A、B两点的距离显然在发生改变,这就是欧氏距离和余弦相似度的不同之处。

根据欧氏距离和余弦相似度各自的计算方式和衡量特征,分别适用于不同的数据分析模型:欧氏距离能够体现个体数值特征的绝对差异,所以更多的用于需要从维度的数值大小中体现差异的分析,如使用用户行为指标分析用户价值的相似度或差异;而余弦相似度更多的是从方向上区分差异,而对绝对的数值不敏感,更多的用于使用用户对内容评分来区分用户兴趣的相似度和差异,同时修正了用户间可能存在的度量标准不统一的问题(因为余弦相似度对绝对数值不敏感)。

因为欧几里得距离度量会受指标不同单位刻度的影响,所以一般需要先进行标准化,同时距离越大,个体间差异越大;空间向量余弦夹角的相似度度量不会受指标刻度的影响,余弦值落于区间[-1,1],值越大,差异越小。但是针对具体应用,什么情况下使用欧氏距离,什么情况下使用余弦相似度?

从几何意义上来说,n维向量空间的一条线段作为底边和原点组成的三角形,其顶角大小是不确定的。也就是说对于两条空间向量,即使两点距离一定,他们的夹角余弦值也可以随意变化。感性的认识,当两用户评分趋势一致时,但是评分值差距很大,余弦相似度倾向给出更优解。举个极端的例子,两用户只对两件商品评分,向量分别为(3,3)和(5,5),这两位用户的认知其实是一样的,但是欧式距离给出的解显然没有余弦值合理。

2.6 聚类效果评估
本节为将介绍另一种聚类算法效果评估方法称为轮廓系数(Silhouette Coefficient)。轮廓系数是类的密集与分散程度的评价指标。它会随着类的规模增大而增大。彼此相距很远,本身很密集的类,其轮廓系数较大,彼此集中,本身很大的类,其轮廓系数较小。轮廓系数是通过所有样本计算出来的,计算每个样本分数的均值,计算公式如下:
这里写图片描述
a是每一个类中样本彼此距离的均值,b是一个类中样本与其最近的那个类的所有样本的距离的均值。

#!/usr/bin/python
# -*-coding:utf-8-*-
# __author__ = 'ShenJun'

import pandas as pda
import matplotlib.pylab as pyl
import numpy as np
from sklearn.cluster import Birch
from sklearn.cluster import KMeans
import pymysql
'''
path="F:\\网络爬虫\\视频课程\\源码\源码\\luqu.csv"
fname=open(path,encoding="utf-8")
data=pda.read_csv(fname)
x=data.iloc[:,1:4].as_matrix()
#n_clusters聚类数  n_jobs:指定线程数   max_iter:最大迭代数
kms=KMeans(n_clusters=4,max_iter=500)
y=kms.fit_predict(x)
# print(y)
# print(data)
#可视化,x代表学生序号,y代表学生类别
s=np.arange(0,len(y))
pyl.plot(s,y,"o")
pyl.show()

'''
'''
聚类算法实现商品的聚类
'''
conn=pymysql.connect(host="127.0.0.1",user="root",passwd="123456",db="taobao")
sql="select price,comment from taob limit 1000"
data=pda.read_sql(sql,conn)
# print(data)
x=data.iloc[:,:].as_matrix()
kms=KMeans(n_clusters=3)
y=kms.fit_predict(x)
# print(y)
for i in range(0,len(y)):
    if(y[i]==0):
        pyl.plot(data.iloc[i:i+1,0:1].as_matrix(),data.iloc[i:i+1,1:2].as_matrix(),"*r")
    if(y[i]==1):
        pyl.plot(data.iloc[i:i+1,0:1].as_matrix(),data.iloc[i:i+1,1:2].as_matrix(),"sy")
    if(y[i]==2):
        pyl.plot(data.iloc[i:i+1,0:1].as_matrix(),data.iloc[i:i+1,1:2].as_matrix(),"pk")
pyl.show()

3、Apriori算法

3.1 Apriori算法简介
Apriori算法的名字正是基于这样的事实:算法使用频繁项集性质的先验性质,即频繁项集的所有非空子集也一定是频繁的。Apriori算法使用一种称为逐层搜索的迭代方法,其中k项集用于探索(k+1)项集。首先,通过扫描数据库,累计每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合。该集合记为L1。然后,使用L1找出频繁2项集的集合L2,使用L2找出L3,如此下去,直到不能再找到频繁k项集。每找出一个Lk需要一次数据库的完整扫描。Apriori算法使用频繁项集的先验性质来压缩搜索空间。

3.2 基本概念

  • 项与项集:设itemset={item1, item_2, …,
    item_m}是所有项的集合,其中,item_k(k=1,2,…,m)成为项。项的集合称为项集(itemset),包含k个项的项集称为k项集(k-itemset)。

  • 关联规则:关联规则是形如A=>B的蕴涵式,其中A、B均为itemset的子集且均不为空集,而A交B为空。

  • 支持度(support):关联规则的支持度定义如下:
    这里写图片描述
    其中P(AUB)表示事务包含集合A和B的并(即包含A和B中的每个项)的概率。注意与P(A or B)区别,后者表示事务包含A或B的概率。

  • 置信度(confidence):关联规则的置信度定义如下:
    这里写图片描述

  • 项集的出现频度(support count):包含项集的事务数,简称为项集的频度、支持度计数或计数。

  • 频繁项集(frequent itemset):如果项集I的相对支持度满足事先定义好的最小支持度阈值(即I的出现频度大于相应的最小出现频度(支持度计数)阈值),则I是频繁项集。

  • 强关联规则:满足最小支持度和最小置信度的关联规则,即待挖掘的关联规则。

3.3 实现步骤
一般而言,关联规则的挖掘是一个两步的过程:
1、找出所有的频繁项集
2、由频繁项集产生强关联规则

相关定义

  • 连接步骤:频繁(k-1)项集Lk-1的自身连接产生候选k项集Ck
    Apriori算法假定项集中的项按照字典序排序。如果Lk-1中某两个的元素(项集)itemset1和itemset2的前(k-2)个项是相同的,则称itemset1和itemset2是可连接的。所以itemset1与itemset2连接产生的结果项集是{itemset1[1], itemset1[2], …, itemset1[k-1], itemset2[k-1]}。连接步骤包含在下文代码中的create_Ck函数中。

  • 剪枝策略
    由于存在先验性质:任何非频繁的(k-1)项集都不是频繁k项集的子集。因此,如果一个候选k项集Ck的(k-1)项子集不在Lk-1中,则该候选也不可能是频繁的,从而可以从Ck中删除,获得压缩后的Ck。下文代码中的is_apriori函数用于判断是否满足先验性质,create_Ck函数中包含剪枝步骤,即若不满足先验性质,剪枝。

  • 删除策略
    基于压缩后的Ck,扫描所有事务,对Ck中的每个项进行计数,然后删除不满足最小支持度的项,从而获得频繁k项集。删除策略包含在下文代码中的generate_Lk_by_Ck函数中。

找出频发项集
1、每个项都是候选1项集的集合C1的成员。算法扫描所有的事务,获得每个项,生成C1(见下文代码中的create_C1函数)。然后对每个项进行计数。然后根据最小支持度从C1中删除不满足的项,从而获得频繁1项集L1。

2、对L1的自身连接生成的集合执行剪枝策略产生候选2项集的集合C2,然后,扫描所有事务,对C2中每个项进行计数。同样的,根据最小支持度从C2中删除不满足的项,从而获得频繁2项集L2。

3、对L2的自身连接生成的集合执行剪枝策略产生候选3项集的集合C3,然后,扫描所有事务,对C3每个项进行计数。同样的,根据最小支持度从C3中删除不满足的项,从而获得频繁3项集L3。

4、以此类推,对Lk-1的自身连接生成的集合执行剪枝策略产生候选k项集Ck,然后,扫描所有事务,对Ck中的每个项进行计数。然后根据最小支持度从Ck中删除不满足的项,从而获得频繁k项集。

样例
这里写图片描述

本文基于该样例的数据编写Python代码实现Apriori算法。代码需要注意如下两点:

  • 由于Apriori算法假定项集中的项是按字典序排序的,而集合本身是无序的,所以我们在必要时需要进行set和list的转换;
  • 由于要使用字典(support_data)记录项集的支持度,需要用项集作为key,而可变集合无法作为字典的key,因此在合适时机应将项集转为固定集合frozenset。
"""
# Python 2.7
# Filename: apriori.py
# Author: llhthinker
# Email: hangliu56[AT]gmail[DOT]com
# Blog: http://www.cnblogs.com/llhthinker/p/6719779.html
# Date: 2017-04-16
"""


def load_data_set():
    """
    Load a sample data set (From Data Mining: Concepts and Techniques, 3th Edition)
    Returns: 
        A data set: A list of transactions. Each transaction contains several items.
    """
    data_set = [['l1', 'l2', 'l5'], ['l2', 'l4'], ['l2', 'l3'],
            ['l1', 'l2', 'l4'], ['l1', 'l3'], ['l2', 'l3'],
            ['l1', 'l3'], ['l1', 'l2', 'l3', 'l5'], ['l1', 'l2', 'l3']]
    return data_set


def create_C1(data_set):
    """
    Create frequent candidate 1-itemset C1 by scaning data set.
    Args:
        data_set: A list of transactions. Each transaction contains several items.
    Returns:
        C1: A set which contains all frequent candidate 1-itemsets
    """
    C1 = set()
    for t in data_set:
        for item in t:
            item_set = frozenset([item])
            C1.add(item_set)
    return C1


def is_apriori(Ck_item, Lksub1):
    """
    Judge whether a frequent candidate k-itemset satisfy Apriori property.
    Args:
        Ck_item: a frequent candidate k-itemset in Ck which contains all frequent
                 candidate k-itemsets.
        Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.
    Returns:
        True: satisfying Apriori property.
        False: Not satisfying Apriori property.
    """
    for item in Ck_item:
        sub_Ck = Ck_item - frozenset([item])
        if sub_Ck not in Lksub1:
            return False
    return True


def create_Ck(Lksub1, k):
    """
    Create Ck, a set which contains all all frequent candidate k-itemsets
    by Lk-1's own connection operation.
    Args:
        Lksub1: Lk-1, a set which contains all frequent candidate (k-1)-itemsets.
        k: the item number of a frequent itemset.
    Return:
        Ck: a set which contains all all frequent candidate k-itemsets.
    """
    Ck = set()
    len_Lksub1 = len(Lksub1)
    list_Lksub1 = list(Lksub1)
    for i in range(len_Lksub1):
        for j in range(1, len_Lksub1):
            l1 = list(list_Lksub1[i])
            l2 = list(list_Lksub1[j])
            l1.sort()
            l2.sort()
            if l1[0:k-2] == l2[0:k-2]:
                Ck_item = list_Lksub1[i] | list_Lksub1[j]
                # pruning
                if is_apriori(Ck_item, Lksub1):
                    Ck.add(Ck_item)
    return Ck


def generate_Lk_by_Ck(data_set, Ck, min_support, support_data):
    """
    Generate Lk by executing a delete policy from Ck.
    Args:
        data_set: A list of transactions. Each transaction contains several items.
        Ck: A set which contains all all frequent candidate k-itemsets.
        min_support: The minimum support.
        support_data: A dictionary. The key is frequent itemset and the value is support.
    Returns:
        Lk: A set which contains all all frequent k-itemsets.
    """
    Lk = set()
    item_count = {}
    for t in data_set:
        for item in Ck:
            if item.issubset(t):
                if item not in item_count:
                    item_count[item] = 1
                else:
                    item_count[item] += 1
    t_num = float(len(data_set))
    for item in item_count:
        if (item_count[item] / t_num) >= min_support:
            Lk.add(item)
            support_data[item] = item_count[item] / t_num
    return Lk


def generate_L(data_set, k, min_support):
    """
    Generate all frequent itemsets.
    Args:
        data_set: A list of transactions. Each transaction contains several items.
        k: Maximum number of items for all frequent itemsets.
        min_support: The minimum support.
    Returns:
        L: The list of Lk.
        support_data: A dictionary. The key is frequent itemset and the value is support.
    """
    support_data = {}
    C1 = create_C1(data_set)
    L1 = generate_Lk_by_Ck(data_set, C1, min_support, support_data)
    Lksub1 = L1.copy()
    L = []
    L.append(Lksub1)
    for i in range(2, k+1):
        Ci = create_Ck(Lksub1, i)
        Li = generate_Lk_by_Ck(data_set, Ci, min_support, support_data)
        Lksub1 = Li.copy()
        L.append(Lksub1)
    return L, support_data


def generate_big_rules(L, support_data, min_conf):
    """
    Generate big rules from frequent itemsets.
    Args:
        L: The list of Lk.
        support_data: A dictionary. The key is frequent itemset and the value is support.
        min_conf: Minimal confidence.
    Returns:
        big_rule_list: A list which contains all big rules. Each big rule is represented
                       as a 3-tuple.
    """
    big_rule_list = []
    sub_set_list = []
    for i in range(0, len(L)):
        for freq_set in L[i]:
            for sub_set in sub_set_list:
                if sub_set.issubset(freq_set):
                    conf = support_data[freq_set] / support_data[freq_set - sub_set]
                    big_rule = (freq_set - sub_set, sub_set, conf)
                    if conf >= min_conf and big_rule not in big_rule_list:
                        # print freq_set-sub_set, " => ", sub_set, "conf: ", conf
                        big_rule_list.append(big_rule)
            sub_set_list.append(freq_set)
    return big_rule_list


if __name__ == "__main__":
    """
    Test
    """
    data_set = load_data_set()
    L, support_data = generate_L(data_set, k=3, min_support=0.2)
    big_rules_list = generate_big_rules(L, support_data, min_conf=0.7)
    for Lk in L:
        print "="*50
        print "frequent " + str(len(list(Lk)[0])) + "-itemsets\t\tsupport"
        print "="*50
        for freq_set in Lk:
            print freq_set, support_data[freq_set]
    print
    print "Big Rules"
    for item in big_rules_list:
        print item[0], "=>", item[1], "conf: ", item[2]

这里写图片描述

猜你喜欢

转载自blog.csdn.net/Jorocco/article/details/82227879
今日推荐